Paper Title:
Effects of Co, Ti Interlayer, and Post-Annealing on the Adhesion Property between TiN Coatings and WC-Co Substrate
  Abstract

In order to improve adhesion strength between TiN coatings and WC-Co substrate, two kinds of interlayer of Co and Ti were pre-deposited before TiN coating process. Thickness and postannealing effects of each interlayer on the adhesion property were investigated through scratch test in this work. Introduction of thin Ti interlayer largely enhanced the adhesion strength between TiN coatings and WC-Co substrate in scratch test. The critical load, Lc2 increased from 64 N without Ti interlayer up to 130N with Ti one of ~ 0.15 thickness. However, post-annealing of TiN/Ti/WCCo system at high temperature of 600 reduced the critical load again. The Ti interlayer caused a deficit of Co content in WC-Co substrate during annealing through diffusion of Co element into Ti interlayer. The reduction of critical load after post-annealing was believed due to diminution in mechanical properties of the substrate derived from the Co deficit in WC-Co substrate. On the other hand, introduction of thin Co interlayer of ~ 0.027 thickness also increased the critical load up to 84 N and improved failure mode, but did not reduce the critical load even after annealing, rather increased it. And, any Co deficit of the substrate was not found after annealing for TiN/Co/WC-Co system.

  Info
Periodical
Solid State Phenomena (Volume 118)
Edited by
Jang Hyun Sung, Chan Gyu Lee, Yong Zoo You, Young Kook Lee and Jae Young Kim
Pages
281-286
DOI
10.4028/www.scientific.net/SSP.118.281
Citation
D. S. Kang, J. T. Ok, S. J. Heo, E. Y. Choi, M. C. Kang, K. H. Kim, "Effects of Co, Ti Interlayer, and Post-Annealing on the Adhesion Property between TiN Coatings and WC-Co Substrate ", Solid State Phenomena, Vol. 118, pp. 281-286, 2006
Online since
December 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jae Seol Lee, Hyeon Taek Son, Toyohiko Yano
Abstract:The layers of ZrO2-Al2O3 were coated on the surface of SiC fibers (Tyranno SA fiber) by dip-coating process. The citric acid-ethylene glycol...
1386
Authors: Jian Sheng Xie, Ping Luan, Jin Hua Li
Chapter 9: Composite Materials II
Abstract:Using magnetron sputtering technology, the CuInSi nanocomposite thin films were prepared by multilayer synthesized method. The structure of...
2770
Authors: Omar Abbes, Feng Xu, Alain Portavoce, Christophe Girardeaux, Khalid Hoummada, Vinh Le Thanh
Chapter 8: Diffusion in Electronic Materials
Abstract:An alternative solution for producing logic devices in microelectronics is spintronics (SPIN TRansport electrONICS). It relies on the fact...
439
Authors: Tai Long Gui, Si Da Jiang, Chun Cheng Ban, Jia Qing Liu
Chapter 2:Advanced Material Science and Technology
Abstract:AlN dielectric thin films were deposited on N type Si(100) substrate by reactive radio frequency magnetron sputtering that directly...
409