Paper Title:
Electrical Properties of ZrO2 Capacitor Dielectrics Deposited by rf Magnetron Sputtering
  Abstract

The structure and electrical properties of ZrO2 dielectric thin films deposited by rf magnetron sputtering were investigated. The fixed oxide charge and interface trap density at the ZrO2/Si interface is substantially decreased by annealing at 500 C. Annealing treatment also enhances the quality of the film by reducing leakage current. The carrier transport mechanism in the ZrO2 film is dominated by thermionic emission.

  Info
Periodical
Solid State Phenomena (Volumes 124-126)
Edited by
Byung Tae Ahn, Hyeongtag Jeon, Bo Young Hur, Kibae Kim and Jong Wan Park
Pages
13-16
DOI
10.4028/www.scientific.net/SSP.124-126.13
Citation
C. M. Lee, K. B. Yim, A. Park, H. J. Kim, "Electrical Properties of ZrO2 Capacitor Dielectrics Deposited by rf Magnetron Sputtering", Solid State Phenomena, Vols. 124-126, pp. 13-16, 2007
Online since
June 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Masato Noborio, Jun Suda, Tsunenobu Kimoto
Abstract:Deposited SiN/SiO2 stack gate structures have been investigated to improve the 4H-SiC MOS interface quality. Capacitance-voltage...
679
Authors: Ping Luan, Jian Sheng Xie, Jin Hua Li
Chapter 3: Surface, Subsurface, and Interface Phenomena
Abstract:Using magnetron sputtering technology, the CuInSi thin films were prepared by multilayer synthesized method. The structure of CuInSi films...
822
Authors: Jian Sheng Xie, Jin Hua Li, Ping Luan
Chapter 2: Surface, Subsurface and Interface Phenomena
Abstract:Thin CuInSi films have been prepared by magnetron co-sputtering, and followed by annealing in N2 atmosphere at different...
302
Authors: Xiao Hua Sun, Shuang Hou, Zhi Meng Luo, Cai Hua Huang, Zong Zhi Hu
Chapter 1: Engineering Science for Manufacturing
Abstract:Bismuth zinc niobate titanium (Bi1.5Zn0.5 Nb0.5Ti1.5O7) (BZNT) thin films were deposited on PtTiSiO2Si substrates by radio frequency (rf)...
211