Paper Title:
Electrical Properties of Lead Zinc Niobate - Lead Zirconate Titanate Thick Films Formed by Aerosol Deposition Process
  Abstract

Lead zinc niobate (PZN) added lead zirconate titanate (PZT) thick films with thickness of 5~10 μm were fabricated on silicon and sapphire substrates using aerosol deposition method. The contents of PZN were varied from 0, 20 and 40 %. The as deposited film had fairly dense microstructure without any crack, and showed only a perovskite single phase formed with nano-sized grains. The as-deposited films on silicon were annealed at temperatures of 700oC, and the films deposited on sapphire were annealed at 900oC in the electrical furnace. The effects of PZN addition on the microstructural evolution were observed using FE-SEM and HR-TEM, and dielectric and ferroelectric properties of the films were characterized using impedance analyzer and Sawyer-Tower circuit, respectively. The PZN added PZT film showed poor electrical properties than pure PZT film when the films were coated on silicon substrate and annealed at 700oC, on the other hand, the PZN added PZT film showed higher remanent polarization and dielectric constant values then pure PZT film when the films were coated on sapphire and annealed at 900oC. The ferroelectric and dielectric characteristics of 20% PZN added PZT films annealed at 900oC were comparable with the values obtained from bulk ceramic specimen with same composition sintered at 1200oC.

  Info
Periodical
Solid State Phenomena (Volumes 124-126)
Edited by
Byung Tae Ahn, Hyeongtag Jeon, Bo Young Hur, Kibae Kim and Jong Wan Park
Pages
169-172
DOI
10.4028/www.scientific.net/SSP.124-126.169
Citation
J. J. Choi, J. H. Jang, D. S. Park, B. D. Hahn, W. H. Yoon, C. Park, "Electrical Properties of Lead Zinc Niobate - Lead Zirconate Titanate Thick Films Formed by Aerosol Deposition Process", Solid State Phenomena, Vols. 124-126, pp. 169-172, 2007
Online since
June 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: De Yin Zhang, Wei Qian, Kun Li, Jian Sheng Xie
Chapter 10: Functional Materials
Abstract:The Ion Beam Enhanced Deposited (IBED) lithium tantalate (LiTaO3) thin film samples with Al/LiTaO3/Pt electrode...
1418
Authors: Ping Luan, Jian Sheng Xie, Jin Hua Li
Chapter 3: Surface, Subsurface, and Interface Phenomena
Abstract:Using magnetron sputtering technology, the CuInSi thin films were prepared by multilayer synthesized method. The structure of CuInSi films...
822
Authors: Jian Sheng Xie, Ping Luan, Jin Hua Li
Chapter 9: Composite Materials II
Abstract:Using magnetron sputtering technology, the CuInSi nanocomposite thin films were prepared by multilayer synthesized method. The structure of...
2770
Authors: Jian Sheng Xie, Jin Hua Li, Ping Luan
Chapter 2: Surface, Subsurface and Interface Phenomena
Abstract:Thin CuInSi films have been prepared by magnetron co-sputtering, and followed by annealing in N2 atmosphere at different...
302
Authors: Xiao Hua Sun, Shuang Hou, Zhi Meng Luo, Cai Hua Huang, Zong Zhi Hu
Chapter 1: Engineering Science for Manufacturing
Abstract:Bismuth zinc niobate titanium (Bi1.5Zn0.5 Nb0.5Ti1.5O7) (BZNT) thin films were deposited on PtTiSiO2Si substrates by radio frequency (rf)...
211