Paper Title:
Study of Gettering Mechanisms in Silicon: Competitive Gettering between Phosphorus Diffusion Gettering and Other Gettering Sites
  Abstract

The effectiveness of phosphorus diffusion gettering (PDG) and related segregation coefficients for different metal impurities were measured applying thermal treatments in the temperature range 800-950 °C for different times. We used multi-crystalline and mono-crystalline CZ p-type wafers with different boron concentrations and different levels of dislocations and bulk micro-defects (BMD). In all sample types, for Cu and Ni we found complete gettering in the temperature range investigated. In the case of Fe, the segregation coefficient increases with both increase in temperature and extension of time. The increase is qualitatively changing when going above 900 °C. At 950 °C the segregation coefficient increases faster at shorter diffusion time but at extended diffusion time it increases slower as compared to diffusion at 900 °C. At the same temperature and time of phosphorus diffusion the segregation coefficient is found to be independent of the metal impurity concentration in the range of 1012-1015 cm-3 investigated. We have shown that the presence of BMD and dislocations in bulk silicon does not impede the ability of PDG to completely remove Fe, Ni and Cu metal impurities from the bulk. Further analysis suggests that the PDG has the same gettering efficiency for mono-crystalline silicon and multi-crystalline silicon. We conclude that if any bulk precipitation of Fe, Ni and Cu impurities is present in multi-crystalline silicon it cannot seriously compete with PDG. However we found that increasing the boron concentration in the samples reduces the segregation coefficient of Fe, and this reduction is more severe at lower temperatures. Finally, by applying a post anneal ramp down from 900 °C to 700 °C after phosphorus diffusion, we found that the Fe segregation coefficient increases by a factor of 36 for lightly B doped samples, from 53 to 1919, leading to a significant reduction of Fe in the bulk after 2 hours ramp down anneal.

  Info
Periodical
Solid State Phenomena (Volumes 131-133)
Edited by
A. Cavallini, H. Richter, M. Kittler and S. Pizzini
Pages
399-404
DOI
10.4028/www.scientific.net/SSP.131-133.399
Citation
M. B. Shabani, T. Yamashita, E. Morita, "Study of Gettering Mechanisms in Silicon: Competitive Gettering between Phosphorus Diffusion Gettering and Other Gettering Sites", Solid State Phenomena, Vols. 131-133, pp. 399-404, 2008
Online since
October 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Vladimir V. Popov
Abstract:Possibilities of grain-boundary diffusion and segregation studies using nuclear gammaresonance spectroscopy (NGR) are considered. It is...
497
Authors: Rodolfo A. Pérez, Patrick Gas, Philippe Maugis
Abstract:Experiments of niobium diffusion at infinite dilution and Nb reaction-diffusion in pure iron and in ferrites with different amounts of...
163
Authors: M.A. Falkenberg, D. Abdelbarey, Vitaly V. Kveder, Michael Seibt
Abstract:The efficiency of solar cells produced from crystalline silicon materials is considerably affected by the presence of metal impurities. In...
229
Authors: Alain Portavoce, Ivan Blum, Lee Chow, Jean Bernardini, Dominique Mangelinck
Abstract:The measurement of diffusion coefficients in today’s materials is complicated by the down scaling of the studied structures (nanometric...
63
Authors: D. Prokoshkina, A.O. Rodin, V. Esin
Chapter 3: Nanomaterials and Grain Boundaries
Abstract:The temperature dependence of the bulk diffusion coefficient of Fe in Cu is determined by EDX in the temperature range from 923 to 1273 K, ,...
171