Paper Title:
Surface Roughness and Morphology Analysis Using an Atomic Force Microscopy of Polycrystalline Diamond Coated Si3N4 Deposited by Microwave Plasma Assisted Chemical Vapor Deposition
  Abstract

Diamond is the hardest material and has high chemical resistant which is one form of carbon. In the present work a study was carried out on polycrystalline diamond coated Si3N4 substrate. The diamond was deposited by Microwave Plasma Assisted Chemical Vapor Deposition (MPACVD) under varying deposition parameters namely CH4 diluted in H2, microwave power and chamber pressure. SEM and AFM are used to investigate the surface morphology and surface roughness. Nucleation phenomena and crystal width were also studied using AFM. Based on SEM investigation it was found that the chamber pressure and %CH4 have more significant effects on nucleation and facet of polycrystalline diamond, In addition microwave power has an effect on the diamond facet that changed from cubic to cauliflower structure. Surface roughness results show that increasing the %CH4 has decreased surface roughness 334.83 to 269.99 nm at 1 to 3% CH4, respectively. Increasing microwave power leads to increase in diamond nucleation and coalescence which lead to less surface roughness. Increasing gas pressure may eliminate Si contamination however it reduces diamond nucleation.

  Info
Periodical
Solid State Phenomena (Volume 136)
Edited by
William Lau, Shang Huai Min, Lee Nam Sua, Ma Jan and Alfred Tok
Pages
153-160
DOI
10.4028/www.scientific.net/SSP.136.153
Citation
A. Purniawan, E. Hamzah, M.R.M. Toff, "Surface Roughness and Morphology Analysis Using an Atomic Force Microscopy of Polycrystalline Diamond Coated Si3N4 Deposited by Microwave Plasma Assisted Chemical Vapor Deposition", Solid State Phenomena, Vol. 136, pp. 153-160, 2008
Online since
February 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Li Gou, Ji Lei Zhu, Jun Guo Ran, Suang Feng Yan
Abstract:In order to improve the adhesion between diamond coatings and cemented tungsten carbide (WC-Co) substrates, the diamond coatings were...
1889
Authors: Duo Sheng Li, Dun Wen Zuo, Yu Li Sun, Rong Fa Chen, Wen Zhuang Lu, Bing Kun Xiang, Min Wang
Abstract:Diamond spherical shell thick film was prepared by high power DC-plasma jet CVD. Atom force microscopy, scanning electron microscopy, Raman...
216
Authors: Xiang Qin Meng, Wu Jun Fu, Bing Wang, Cheng Tao Yang
Chapter 14: Thin Films
Abstract:Nanocrystalline diamond (NCD) films were prepared on polycrystalline aluminum oxide (Al2O3) substrates by microwave plasma chemical vapor...
2419
Authors: You Yi Zheng, Chun Lin Zhang, Xing Xin Xu
Chapter 3: Materials Science
Abstract:The diamond thin films was deposited by hot filament CVD method in the Cemented Carbide (YG6) substrate. The surface morphology and quality...
589