Paper Title:
Influence of Thermal Cycling and Equivalent Heat Treatment on Amplitude Dependence of Internal Friction in Cu-Al-Mn Shape Memory Alloys
  Abstract

The influence of thermal cycling between - 196 °C and 200 °C and equivalent heat treatment at 200 °C on the amplitude dependence of internal friction at room temperature has been studied in as cast Cu – Al - Mn shape memory alloys with different chemical compositions. Using X-ray diffraction one composition was found to be austenitic and two others martensitic with two martensite types (2H and 18R) at room temperature. All specimens were thermally cycled for 100 times. During one thermal cycle the specimen underwent altogether two phase transformations one in each direction. Thermal cycling causes microstructural changes in the specimens due to atomic reordering, thermal stresses, which are generated in the martensitic state due to the anisotropy of thermal expansion, or due to the nucleation and propagation of interphase cracks in parent phase. During repeated thermal cycling the transition peaks obtained in mechanical spectroscopy became narrower due to an enduring change of the microstructure and annealing effect at 200 °C. To compare between the effects of thermal cycling and heat treatment one martensitic specimen was annealed at 200 °C. For selected cycle numbers and heat treatment times the amplitude dependence of damping was measured at room temperature. The influence of thermal cycling of martensitic specimens on the damping level was found to be similar to the influence of heat treatment at 200 °C. It is most likely that the highest heat treatment temperature is more important for the amplitude dependence of damping than the temperature change during thermal cycling. Cracks due to thermal cycling were found in all cycled specimens. They have no significant effect on the amplitude dependence of damping of the martensitic samples, whereas some small influence could be observed in austenitic samples at room temperature.

  Info
Periodical
Solid State Phenomena (Volume 137)
Edited by
Igor S. Golovin and Daniil M. Levin
Pages
137-144
DOI
10.4028/www.scientific.net/SSP.137.137
Citation
A. Mielczarek, M. Marczyk, W. Riehemann, "Influence of Thermal Cycling and Equivalent Heat Treatment on Amplitude Dependence of Internal Friction in Cu-Al-Mn Shape Memory Alloys", Solid State Phenomena, Vol. 137, pp. 137-144, 2008
Online since
March 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jaroslav Polák, Martin Petrenec
Abstract:The fatigue properties of ferritic-pearlitic-bainitic steel using specimens produced from massive forging were measured in stress controlled...
577
  | Authors: S. Abdul Aziz, Margaret Lucas
Abstract:The use of ultrasonic excitation of tools and dies in metal forming operations has been the subject of ongoing research for many years....
311
Authors: Shu Ying Yin, Li Jia Chen, Xin Wang
Building Materials
Abstract:In order to identify the influence of solid solution, aging and solid solution plus aging treatments on the low-cycle fatigue behavior of the...
883
Authors: S.P. Nikanorov, B.K. Kardashev, B.N. Korchunov, V.N. Osipov
Chapter 4: Dislocation Dynamics
Abstract:Acoustic measurements of Young’s modulus and internal friction at frequencies of longitudinal vibrations of about 100 kHz were made in the...
161
Authors: Yu Li Gu, Yu Huai He, Chang Kui Liu, Chun Hu Tao
Chapter 2: Applications of Materials in Manufacturing Technologies, Materials Science and Engineering
Abstract:Low cycle fatigue failure tests of the powder metallurgical nickel based superalloy FGH96 at 550°C and 720°C were carried out under total...
418