Paper Title:
Crystallisation of Amorphous Al60Fe20Ti15Ni5 Alloy Produced by Mechanical Alloying
  Abstract

In the present work, an elemental powder mixture of Al60Fe20Ti15Ni5 (at.%) was mechanically alloyed in a high-energy ball mill. The phase transformations occurring in the material during milling were studied with the use of X-ray diffraction. The results obtained show that an amorphous phase was formed during performed mechanical alloying process. Thermal behaviour of the milling product was examined by differential scanning calorimetry. It was found that amorphous phase crystallised above 540 °C when a heating rate of 40 °C/min was applied. On the basis of X-ray diffraction results, crystallisation product was identified as a cubic phase with the lattice parameter a0 = 11.856 Å, isomorphic with the 2 (Al2FeTi, fcc structure D8a) phase. The mean crystallite size of the crystallised 2 phase was 19 nm.

  Info
Periodical
Solid State Phenomena (Volume 163)
Edited by
Danuta Stróż & Małgorzata Karolus
Pages
243-246
DOI
10.4028/www.scientific.net/SSP.163.243
Citation
M. Krasnowski, T. Kulik, "Crystallisation of Amorphous Al60Fe20Ti15Ni5 Alloy Produced by Mechanical Alloying", Solid State Phenomena, Vol. 163, pp. 243-246, 2010
Online since
June 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Guo Xian Liang, Robert Schulz
93
Authors: Kui Bao Zhang, Zheng Yi Fu, Jin Yong Zhang, Wei Min Wang, Hao Wang, Yu Cheng Wang, Qing Jie Zhang
Abstract:The equiatomic multicomponent CoCrFeNiCuAl high-entropy alloy powder was synthesized by mechanical alloying. The effects of milling time and...
383
Authors: H. Kaffash, Ali Shokuhfar, Hamid Reza Rezaie, Ehsan Mostaed, Ali Mostaed
Abstract:Fabrication of alloys in the solid state via mechanical alloying (MA) process has been studied by earlier researchers. The effects of milling...
1262
Authors: Amir Reza Shirani-Bidabadi, Ali Shokuhfar, Mohammad Hossein Enayati, Mazda Biglari
Abstract:In this research, the formation mechanisms of a (NiCr)Al-Al2O3 nanocomposite were investigated. The structural changes of powder particles...
21