Paper Title:
Beta Titanium Alloys with Very High Ductility Induced by Complex Deformation Mechanisms: a New Material Perspective for Coronary Stent Applications
  Abstract

The increased use of metallic biomaterials in contact with blood e.g. for application as coronary stents is steadily resulting in the development of new biomaterials. Conventional bare-metal stents made by stainless steel were reported on adverse reactions against human body and are gradually replaced by coated stainless steel. The new generation of stent requires fundamental improvements at the materials point of view. Although titanium and classical Ti-alloys display superior biocompatibility compared to other metallic materials (stainless steels, Co-Cr), the major drawback of their relatively low ductility (typically 15%-25% of elongation) seriously limits their applications as cardiovascular stents, where large ductility is basically required during the stent deployment procedure and long-term service. In this paper, new titanium alloys with high ductility, a binary Ti-12Mo (wt%) and a ternary Ti-9Mo-6W (wt%) were designed by using a chemical formulation strategy based on the electronic design method called “the d-electron alloy design method”. Both alloys were synthesized and thermo-mechanically treated into beta-metastable state. In tensile tests, both alloys exhibited outstanding ductility of 43% and 46% in total elongation at room temperature, which is almost two times greater than the normal value shown with classical titanium alloys. Optical microscopy and detailed TEM observations on the deformed specimens revealed a complex deformation mechanism, involving {332}<113> mechanical twinning, stress induced plate shaped omega phase and stress induced martensitic (SIM) transformation β-α’’.

  Info
Periodical
Solid State Phenomena (Volumes 172-174)
Edited by
Yves Bréchet, Emmanuel Clouet, Alexis Deschamps, Alphonse Finel and Frédéric Soisson
Pages
129-134
DOI
10.4028/www.scientific.net/SSP.172-174.129
Citation
F. Sun, T. Gloriant, P. Vermaut, P. Jacques, F. Prima, "Beta Titanium Alloys with Very High Ductility Induced by Complex Deformation Mechanisms: a New Material Perspective for Coronary Stent Applications", Solid State Phenomena, Vols. 172-174, pp. 129-134, 2011
Online since
June 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhen Tao Yu, Lian Zhou, Lijuan Luo, Maohong Fan, Yanyan Fu
Abstract:The effects of alloying elements such as Mo, Sn, Zr, Nb, deforming-rate, solid solution and aging treatment on mechanical property and...
595
Authors: Jeong Min Kim, Bong Koo Park, Joong Hwan Jun, Ki Tae Kim, Woon Jae Jung
Abstract:Small amounts of minor alloying elements such as RE and Sr were added to Mg- 8wt%Al-5wt%Zn (AZ91D+4%Zn), and their effects on the...
374
Authors: Zhen Tao Yu, Gui Wang, Xi Qun Ma, Matthew S. Dargusch, Jian Ye Han, Sen Yu
Abstract:The effects of alloy chemistry and heat treatment on the microstructure and mechanical properties of Ti-Nb-Zr-Mo-Sn near  type titanium...
303
Authors: Yuichi Nakahira, Tomonari Inamura, Hiroyasu Kanetaka, Shuichi Miyazaki, Hideki Hosoda
Abstract:Effect of nitrogen (N) addition on mechanical properties of Ti-Cr-Sn alloy was investigated in this study. Ti-7mol%Cr-3mol%Sn was selected...
2126
Authors: Yong Hua Li, Xin Jun Liang, Tao Fan
Abstract:Biomedical titanium alloys can be used for replacement and repair surgeries of human hard tissues. In recent years, the new b type titanium...
2009