Paper Title:
Oxygen, Hydrogen and Main Alloying Chemical Elements Partitioning Upon Alpha←→Beta Phase Transformation in Zirconium Alloys
  Abstract

Due to their adequate properties, zirconium alloys are the reference materials for the nuclear fuel cladding tubes of Light Water Reactors (LWR). During some hypothetical accidental High Temperature (HT) transients, the materials should experience heavy steam oxidation and deep metallurgical evolutions. This promotes Alpha-Beta phase transformations and an associated strong partitioning of oxygen/hydrogen and of the main chemical alloying elements (Nb, Sn, Fe and Cr). Moreover, it has been shown quite recently that such chemical elements partitioning during on-cooling Beta-to-Alpha transformation can strongly impact the residual mechanical properties of HT oxidized materials. Thus, it appeared that it was important to better quantify and, if possible, to compute the quite complex phase equilibrium that occurs in multi-alloyed zirconium materials in the presence of both oxygen and hydrogen. For that, systematic studies have been performed on industrial alloys, charged with oxygen and/or hydrogen. After applying different heating/cooling scenarii, both Electron Microprobe using Wave Dispersive Spectrometry (WDS) and Nuclear Microprobe using Elastic Recoil Detection Analysis (ERDA) have been applied. Finally, to support the observed chemical elements partitioning between the Alpha and Beta allotropic phases, some thermodynamic calculations have been performed thanks to the development and the use of a specific thermodynamic database for zirconium alloys called “Zircobase".

  Info
Periodical
Solid State Phenomena (Volumes 172-174)
Edited by
Yves Bréchet, Emmanuel Clouet, Alexis Deschamps, Alphonse Finel and Frédéric Soisson
Pages
753-759
DOI
10.4028/www.scientific.net/SSP.172-174.753
Citation
J. C. Brachet, C. Toffolon-Masclet, D. Hamon, T. Guilbert, G. Trego, J. Jourdan, A. Stern, C. Raepsaet, "Oxygen, Hydrogen and Main Alloying Chemical Elements Partitioning Upon Alpha←→Beta Phase Transformation in Zirconium Alloys", Solid State Phenomena, Vols. 172-174, pp. 753-759, 2011
Online since
June 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Masahiko Ikeda, S. Komatsu, Yuichiro Nakamura, Y. Kobayashi
Abstract:Using Ti-40mass%Ta-0, -4, -8 and -12mass%Sn alloys, the effect of Sn addition on phase constitution in the solution treated and quenched...
1273
Authors: Xiang Guo Liu, Xiao Dong Peng, Wei Dong Xie, Qun Yi Wei
Abstract:In this paper, effects of strontium on Mg alloys and preparation technology of Mg-Sr and Mg-Sr-Al master alloys were summarized respectively....
31
Authors: Ming Bo Yang, Fu Sheng Pan, Jing Zhang, Jin Zhang
Abstract:The current status of research and application in the AZ(Mg-Al-Zn), AS(Mg-Al-Si), AE(Mg-Al-RE), AX(Mg-Al-Ca), ACM or MRI(Mg-Al-Ca-RE)and...
923
Authors: Jeong Min Kim, Bong Koo Park, Joong Hwan Jun, Ki Tae Kim, Woon Jae Jung
Abstract:Small amounts of minor alloying elements such as RE and Sr were added to Mg- 8wt%Al-5wt%Zn (AZ91D+4%Zn), and their effects on the...
374
Authors: Xiao Ping Luo, Lan Ting Xia, Ming Gang Zhang
Abstract:The effect of Cd and Sb addition on the microstructural and mechanical properties of as-cast AZ31 alloys was investigated and compared. The...
197