[1]
Chaboche JL, Time independent constitutive theories for cyclic plasticity. International Journal of Plasticity, 2, 149-88 (1986).
DOI: 10.1016/0749-6419(86)90010-0
Google Scholar
[2]
Slavik D and Sehitoglu H. Constitutive models for thermal loading. Journal of Engineering Materials and Technology, 108, 303-312 (1986).
DOI: 10.1115/1.3225887
Google Scholar
[3]
Hsu, T. R. The Finite Element Method in Thermomechanics, Allen & Unwin, Boston, (1990).
Google Scholar
[4]
Dowling, N. E., Mechanical Behavior of Materials, Second fedition, Prentice-Hall, NJ, (1998).
Google Scholar
[5]
Ueda, Y. and Yamakawa, T., Thermal nonlinear behavior of structures. In Advances in Computational Methods in Structural Mechanics and Design, J.T. Oden, R.W. Clough and Y. Yamamoto (eds. ), pp.375-392, University of Alabama Press, Huntsville, (1972).
Google Scholar
[6]
Argon AS, Ed., Constitutive Equations in Plasticity, MIT Press, Cambridge, Massachusetts, (1975).
Google Scholar
[7]
Chaboche, J.L. A review of some plasticity and viscoplasticity constitutive theories. International Journal of Plasticity, 24, 1642-1693 (2008).
DOI: 10.1016/j.ijplas.2008.03.009
Google Scholar
[8]
Bari, S. Constitutive modeling for cyclic plasticity and ratcheting. Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, January (2001).
Google Scholar
[9]
Duszek, M. K. and Perzyna, P. On combined isotropic and kinematic hardening effects in plastic flow processes. International Journal of Plasticity, 7, 351-363 (1991).
DOI: 10.1016/0749-6419(91)90009-n
Google Scholar
[10]
Ghassemieh, M. and Kukreti, A.R. Application of kinematic hardening models to cyclic plasticity structural analysis problems. Computers & Structures, 46, 633-647 (1993).
DOI: 10.1016/0045-7949(93)90392-q
Google Scholar
[11]
Corona, E., Hassan, T. and Kyriakides, S. On the performance of kinematic hardening rules in predicting a class of biaxial ratcheting histories. International Journal of Plasticity, 12, 117-145 (1996).
DOI: 10.1016/s0749-6419(95)00047-x
Google Scholar
[12]
Chen, X. and Jiao, R. Modified kinematic hardening rule for multiaxial ratcheting prediction. International Journal of Plasticity, 20, 871-898 (2004).
DOI: 10.1016/j.ijplas.2003.05.005
Google Scholar
[13]
Prager, W. A. New method of analyzing stress and strains work-hardening plastic solids. Journal of Applied Mechanics, 23, 493-496 (1956).
DOI: 10.1115/1.4011389
Google Scholar
[14]
Ziegler, H. A modification of Prager's hardening rule. Applied Mathematics, 17, 55-65 (1959).
Google Scholar
[15]
Armstrong, P. J. and Frederick, C. O. A mathematical representation of the multiaxial Bauschinger effect, C.E.G. B Report No. RD/B/N 731, (1966).
Google Scholar
[16]
Jiang, Y. and Kurath, P. Characteristics of the Armstrong-Frederick type plasticity models. International Journal of Plasticity, 12, 387-415 (1996).
DOI: 10.1016/s0749-6419(96)00013-7
Google Scholar
[17]
Lubarda, V. A. and Benson, D.J. On the numerical algorithm for isotropic–kinematic hardening with the Armstrong–Frederick evolution of the back stress. Computer Methods in Applied Mechanics and Engineering, 191, 3583-3596 (2002).
DOI: 10.1016/s0045-7825(02)00296-7
Google Scholar
[18]
Rahmana, S. M., Hassana, T. and Coronab, E. Evaluation of cyclic plasticity models in ratcheting simulation of straight pipes under cyclic bending and steady internal pressure. International Journal of Plasticity, 24, 1756-1791 (2008).
DOI: 10.1016/j.ijplas.2008.02.010
Google Scholar
[19]
Hassana, T., Talebb L. and Krishnaa, S. Influence of non-proportional loading on ratcheting responses and simulations by two recent cyclic plasticity models. International Journal of Plasticity, 24, 1863-1889 (2008).
DOI: 10.1016/j.ijplas.2008.04.008
Google Scholar
[20]
Colak, O. U. Kinematic hardening rules for modeling uniaxial and multiaxial ratcheting. Materials & Design, 29, 1575-1581 (2008).
DOI: 10.1016/j.matdes.2007.11.003
Google Scholar
[21]
Elline, F. An anisotropic hardening rule for elastic-plastic solids based on experimental observations. Journal of Applied Mechanics, 56, 493-496 (1989).
Google Scholar
[22]
Krishnamoorthy, C. S. Finite Element Analysis: Theory and Programming, Tata McGraw-Hill Publishing Company, New Delhi, (1987).
Google Scholar
[23]
Barham, W., Aref, A. and Dargush, G. On the elastoplastic cyclic analysis of plane beam structures using a flexibility-based finite element approach. International Journal of Solids and Structures, 45, 5688-5704 (2008).
DOI: 10.1016/j.ijsolstr.2008.06.021
Google Scholar
[24]
Wu, R. and Hsu, T. R. Finite element formulations on thermo-elastic-plastic analysis of planar structures. Thermo-mechanics Lab. Rep. 78-6-56, Univ. Manitoba, (1978).
Google Scholar
[25]
Owen, D. R. and Hinton, E. Finite Elements in Plasticity, Theory and Practice, Pineridge Press, New York, (1980).
Google Scholar
[26]
Zahavi, E. and Torbilo, V. Fatigue Design Life Expectancy of Machine Parts, CRC, Boca Raton, (1996).
DOI: 10.1201/9780203756133
Google Scholar
[27]
Jiang, Y. and Zhang, J. Benchmark experiments and characteristic cyclic plasticity deformation. International Journal of Plasticity, 24, 1481-1515 (2008).
DOI: 10.1016/j.ijplas.2007.10.003
Google Scholar
[28]
Crisfield, M. A. Non-Liner Finite Element Analysis of Solids and Structure, Edition, Vol. 2, John Wiley & Sons, Chichester, (1997).
Google Scholar
[29]
Eslami, M. R. and Mahbadi, H. Cyclic loading of beams based on the Prager and Frederick- Armestrong kinematic hardening models. International Journal of Mechanical Sciences, 44, 859-879 (2002).
DOI: 10.1016/s0020-7403(02)00033-4
Google Scholar
[30]
Hassana, T. and Kyriakides, S. Ratcheting in cyclic plasticity, Part 1; Uniaxial Behavior. International Journal of Plasticity, 8, 91-116 (1992).
DOI: 10.1016/0749-6419(92)90040-j
Google Scholar
[31]
Lima, C. B., Kim, K. S. and Seonga, J. B. Ratcheting and fatigue behavior of a copper alloy under uniaxial cyclic loading with mean stress. International Journal of Fatigue, 31, 501-507 (2009).
DOI: 10.1016/j.ijfatigue.2008.04.008
Google Scholar