[1]
J. Davidovits, F.A. Iaga, Fabrication of Stone Objects, by Geopolymeric Synthesis, in The Pre-Incan Huanka Civilisation (Peru), 21st International Symposium for Archaeometry Brookhaven National Laboratory, New York, (1981).
Google Scholar
[2]
J.G.S.D. van Jaarsveld, Effect of the alkali metal activator on the properties of fly ash-based geopolymers, Ind. Eng. Chem. Res. 38(10) (1999) 3932–3941.
DOI: 10.1021/ie980804b
Google Scholar
[3]
J. Davidovits, Geopolymers: inorganic polymeric new materials, Journal of Thermal Analysis. 37 (1991) 1633–1656.
DOI: 10.1007/bf01912193
Google Scholar
[4]
Ministry of Energy and Mineral Resources of the Republic of Indonesia, Indonesia Electricity Development Plan and Indonesia Coal-Ash Management Implementation, International Coal Based Power Conferences 2016, New Delhi, (2016).
Google Scholar
[5]
ASTM International, ASTM C618-12a: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use, ASTM International, United States, (2014).
DOI: 10.1520/c0618-99
Google Scholar
[6]
P. Chindaprasirt, P.D. Silva, K. Sagoe-Crentsil, S. Hanjitsuwan, Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems, Journal of Materials Science. 47(12) (2012) 4876–4883.
DOI: 10.1007/s10853-012-6353-y
Google Scholar
[7]
P. Chindaprasirt, Workability and strength of coarse high calcium fly ash geopolymer, Cement and Concrete Composites. 29 (2007) 224–229.
DOI: 10.1016/j.cemconcomp.2006.11.002
Google Scholar
[8]
U. Rattanasak, K. Pankhet, P. Chindaprasirt, Effect of chemical admixtures on properties of high-calcium fly ash geopolymer, International Journal of Minerals, Metallurgy, and Materials. 18(3) (2011) 364–369.
DOI: 10.1007/s12613-011-0448-3
Google Scholar
[9]
S. Hanjitsuwan, S. Hunpratub, P. Thongbai, S. Maensiri, V. Sata, Cement & concrete composites effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste, Cement and Concrete Composites. 45 (2014).
DOI: 10.1016/j.cemconcomp.2013.09.012
Google Scholar
[10]
D. Hardjito, B.V. Rangan, Development and properties of low-calcium fly ash-based geopolymer concrete, Research Report, Curtin University of Technology, Perth, (2005).
Google Scholar
[11]
B.V. Rangan, Geopolymer concrete for environmental protection, The Indian Concrete Journal. 88(4) (2014) 41-59.
Google Scholar
[12]
Z. Xie, Y. Xi, Hardening mechanisms of an alkaline-activated class F fly ash, Cement and Concrete Research. 31(9) (2001) 1245–1249.
DOI: 10.1016/s0008-8846(01)00571-3
Google Scholar
[13]
P. Nath, P.K. Sarker, Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature, Cement and Concrete Composites. 55 (2015) 205–214.
DOI: 10.1016/j.cemconcomp.2014.08.008
Google Scholar
[14]
ASTM International, ASTM C305-06: Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars, ASTM International, United States, (2009).
Google Scholar
[15]
ASTM International, ASTM C191-04a: Time of Setting of Hydraulic Cement by Vicat Needle, ASTM International, United States, (2008).
Google Scholar
[16]
ASTM International, ASTM C109/C109-07: Compressive Strength of Hydraulic Cement Mortars ( Using 2-in or [ 50-mm ] Cube Specimens ) 1, ASTM International, United States, (2008).
DOI: 10.1520/c0109_c0109m-20
Google Scholar
[17]
P. Topark-ngarm, P. Chindaprasirt, V. Sata, Setting time, strength, and bond of high-calcium geopolymer concrete, Journal of Materials in Civil Engineering. 27(7) (2015) 1–7.
DOI: 10.1061/(asce)mt.1943-5533.0001157
Google Scholar
[18]
A.R.M. Ridzuan, A.A. Khairulniza, M.F. Arshad, Effect of sodium silicate types on the high calcium geopolymer concrete, Materials Science Forum. 803 (2015) 185-193.
DOI: 10.4028/www.scientific.net/msf.803.185
Google Scholar
[19]
J.G.S. van Jaarsveld and J.S.J. van Deventer, Effect of the alkali metal activator on the properties of fly ash-based geopolymers, Ind. Eng. Chem. Res. 38(10) (1999) 3932–3941.
DOI: 10.1021/ie980804b
Google Scholar