Authors: S. Benbelaid, B. Bezzazi, A. Bezazi
Abstract: This paper considers damage development mechanisms in composite laminates subjected to tensile loading. The continuum damage mechanics is the most widely used approach to capture the non linear behaviour of laminates due to cracking. In this study, a continuum damage model based on ply failure criteria, which is initially proposed by Ladevèze has been extended to cover all plies failures mechanisms using an accurate numerical model to predict the equivalent damage accumulation. However, this model requires a reliable representation of the elementary damage mechanisms which can be produced in the composite laminate. To validate this model, a numerical application has been carried on the cross-ply laminates of type [0n/90m]s.. A shear lag model was adapted to calculate the average stress of the 0° and 90° plies. The solution presented is obtained by using finite element analysis which implements progressive failure analysis. The effect of the stacking sequences has been done by varying the thickness of the 90° plies.
1
Authors: Amar Irekti, B. Bezzazi
Abstract: In the development of composites materials, the matrix acts as a binder of different reinforcements can distribute the stress, provide good resistance to chemical structure and the desired shape to the final product. But there are still some drawbacks that arise in the physicochemical and mechanical properties of thermosetting matrices. Our job is to synthesize composite materials with news formulations of thermosetting matrices (Granitex products) by the incorporation of 40% of local mineral fillers. The latter give the matrix properties which it does not have, first, to reduce the cost of composite materials, and secondly, to improve implementation by increasing the viscosity and reducing the withdrawal to its minimum value. Rheological testing of mixtures prepared is made on the cone-plate viscometer, or the sample undergoes a shear in the conical space between the plane and the cone. The geometry of the cone - package ensures constant velocity gradient throughout the volume. The rheograms obtained, represents the evolution of the shear stress as a function of shear rate of resin mixtures containing 35% of mineral filler (pozzolan). The mineral filler increases significantly in rheological parameters, whatever the nature of the mineral filler. Compared to the control without charges, an increase of 60% of the shear stress and that of plastic viscosity were recorded for the epoxy resin. The software Rheowine viscometer, enabled us to model and identified the rheological behavior of these mixed with resin. The results obtained in this modeling, confirmed that the resin mixtures have shear-thinning rheological behavior and their behavior follows the model of the Ostwald of Waele.
79
Authors: C. Aribi, B. Bezzazi, A. Mir
Abstract: The performances of composite materials are influenced by the properties of the matrix used. The latter ensures the desired form and the protection of the reinforcements against the external attacks.
This work comprises a comparative study between laminates developed with different matrices in epoxy resin. Their characterization has to choose the best matrix able to give best results in static and dynamic tests. The resins used are provided by Granitex Algéria and which are primary Médapoxy STR resins, Médapoxy inject 812 and Médapoxy Al resin. Hence, the results of tensile tests prove a fragility of the AL resin which influences the maximal constraint of traction compared to the STR primary resin. Furthermore, Inject 812 resin shows very limited mechanical properties due to the changes of the epoxy network with the addition of diluents which has significantly decreased its viscosity.
17
Authors: A. Mir, C. Aribi, B. Bezzazi
Abstract: Work presented is interested in the characterization of the quasistatic mechanical properties and in fatigue of a composite laminated in jute/epoxy. The natural fibres offer promising prospects thanks to their interesting specific properties, because of their low density, but also with their bio deterioration. Several scientific studies highlighted the good mechanical resistance of the vegetable fibre composites reinforced, even after several recycling. Because of the environmental standards which become increasingly severe, one attends the emergence of eco-materials at the base of natural fibres such as flax, bamboo, hemp, sisal, jute. The fatigue tests on elementary vegetable fibres show an increase of about 60% of the rigidity of elementary fibres of hemp subjected to cyclic loadings. In this study, the test-tubes manufactured by the method infusion have sequences of stacking of 0/90° and ± 45° for the shearing and tensile tests. The quasistatic tests reveal a variability of the mechanical properties of about 8%. The tensile fatigue tests were carried out for levels of constraints equivalent to half of the ultimate values of the composite. Once the fatigue tests carried out for well defined values of cycles, a series of static tests of traction type highlights the influence of the number of cycles on the quasi static mechanical behavior of the laminate jute/epoxy.
65
Authors: S. Benbelaid, B. Bezzazi, A. Bezazi
Abstract: This paper considers damage development mechanisms in cross-ply laminates using an accurate numerical model. Under static three points bending, two modes of damage progression in cross-ply laminates are predominated: transverse cracking and delamination. However, this second mode of damage is not accounted in our numerical model. After a general review of experimental approaches of observed behavior of laminates, the focus is laid on predicting laminate behavior based on continuum damage mechanics. In this study, a continuum damage model based on ply failure criteria is presented, which is initially proposed by Ladevèze. To reveal the effect of different stacking sequence of the laminate; such as thickness and the interior or exterior disposition of the 0° and 90° oriented layers in the laminate, an equivalent damage accumulation which cover all ply failure mechanisms has been predicted. However, the solution algorithm using finite element analysis which implements progressive failure analysis is summarized. The results of the numerical computation have been justified by the previous published experimental observations of the authors.
42