Effect of Water Temperature, pH Value, and Film Thickness on the Wettability Behaviour of Copper Surfaces Coated with Copper Using EB-PVD Technique

Article Preview

Abstract:

This research investigates the effect of surface roughness, water temperature, and pH value on the wettability behaviour of copper surfaces. An electron beam physical vapour deposition technique was used to fabricate 25, 50, and 75 nm thin films of copper on the surface of copper substrates. Surface topographical analysis, of the uncoated and coated samples, was performed using an atomic force microscopy device to observe the changes in surface microstructure. A goniometer device was then employed to examine the surface wettability of the samples by obtaining the static contact angle between the liquid and the attached surface using the sessile drops technique. Waters of pH 4, 7, and 9 were employed as the contact angle testing fluids at a set of fixed temperatures that ranged from 20°C to 60°C. It was found that increasing the deposited film thickness reduces the surface roughness of the as-prepared copper surfaces and thus causing the surface wettability to diverge from its initial hydrophobic nature towards the hydrophilic behaviour region. A similar divergence behaviour was seen with the rise in temperature of water of pH 4, and 9. In contrast, the water of pH 7, when tested on the uncoated surface, ceased to reach a contact angle below 90o. It is believed that the observed changes in surface wettability behaviour is directly linked to the liquid temperature, pH value, surface roughness, along with the Hofmeister effect between the water and the surface in contact.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

124-141

Citation:

Online since:

November 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.M. Abou Elmaaty, A.E. Kabeel, M. Mahgoub, Corrugated plate heat exchanger review, Renewable Sustainable Energy Rev, 70 (2017) 852-860.

DOI: 10.1016/j.rser.2016.11.266

Google Scholar

[2] L. Wang, B. Sundén, R.M. Manglik, Basic features and development of plate heat exchangers, Plate heat exchangers : design, applications and performance WIT Press, Southampton, SO40 7AA, UK, 2007, pp.1-6.

DOI: 10.1002/zamm.200890003

Google Scholar

[3] L. Wang, B. Sundén, R.M. Manglik, Materials and manufacturing, Plate heat exchangers : design, applications and performance WIT Press, Southampton, SO40 7AA, UK, 2007, pp.41-49.

Google Scholar

[4] J.P. Holman, Heat transfer, Ninth Edition ed., McGraw-Hill, New York, (2002).

Google Scholar

[5] Y. Nam, Y.S. Ju, A comparative study of the morphology and wetting characteristics of micro/nanostructured Cu surfaces for phase change heat transfer applications, Journal of Adhesion Science and Technology, 27 (2013) 2163-2176.

DOI: 10.1080/01694243.2012.697783

Google Scholar

[6] N. Ali, J.A. Teixeira, A. Addali, A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties, J. Nanomater., 2018 (2018) 33.

DOI: 10.1155/2018/6978130

Google Scholar

[7] G. Singh Sokhal, D. Gangacharyulu, V.K. Bulasara, Influence of copper oxide nanoparticles on the thermophysical properties and performance of flat tube of vehicle cooling system, Vacuum, 157 (2018) 268-276.

DOI: 10.1016/j.vacuum.2018.08.048

Google Scholar

[8] K.V. Wong, O. De Leon, Applications of Nanofluids: Current and Future, Adv. Mech. Eng., 2 (2010) 519659.

Google Scholar

[9] V. Kumar, A.K. Tiwari, S.K. Ghosh, Application of nanofluids in plate heat exchanger: A review, Energy Conversion and Management, 105 (2015) 1017-1036.

DOI: 10.1016/j.enconman.2015.08.053

Google Scholar

[10] G. Huminic, A. Huminic, Application of nanofluids in heat exchangers: A review, Renewable Sustainable Energy Rev, 16 (2012) 5625-5638.

DOI: 10.1016/j.rser.2012.05.023

Google Scholar

[11] A. Durmuş, H. Benli, İ. Kurtbaş, H. Gül, Investigation of heat transfer and pressure drop in plate heat exchangers having different surface profiles, Int. J. Heat Mass Transf., 52 (2009) 1451-1457.

DOI: 10.1016/j.ijheatmasstransfer.2008.07.052

Google Scholar

[12] M.M. Abu-Khader, Plate heat exchangers: Recent advances, Renewable Sustainable Energy Rev, 16 (2012) 1883-1891.

DOI: 10.1016/j.rser.2012.01.009

Google Scholar

[13] J. Zhang, X. Zhu, M.E. Mondejar, F. Haglind, A review of heat transfer enhancement techniques in plate heat exchangers, Renewable Sustainable Energy Rev, 101 (2019) 305-328.

DOI: 10.1016/j.rser.2018.11.017

Google Scholar

[14] Y. Takata, S. Hidaka, M. Masuda, T. Ito, Pool boiling on a superhydrophilic surface, International Journal of Energy Research, 27 (2003) 111-119.

DOI: 10.1002/er.861

Google Scholar

[15] C. Choi, M. Kim, Wettability effects on heat transfer, Two Phase Flow, Phase Change and Numerical Modeling, Intechopen2011.

DOI: 10.5772/19512

Google Scholar

[16] T.H. Kim, Y.S. Chang, B.H. Kang, Regeneration performance of liquid desiccant on the surface of a plate-type heat exchanger, Journal of Thermal Science and Technology, 11 (2016).

DOI: 10.1299/jtst.2016jtst0032

Google Scholar

[17] Y. Yuan, T.R. Lee, Contact angle and wetting properties, Springer Series in Surface Sciences, 51 (2013) 34.

Google Scholar

[18] E.Y. Gatapova, A.M. Shonina, A.I. Safonov, V.S. Sulyaeva, O.A. Kabov, Evaporation dynamics of a sessile droplet on glass surfaces with fluoropolymer coatings: focusing on the final stage of thin droplet evaporation, Soft Matter, 14 (2018) 1811-1821.

DOI: 10.1039/c7sm02192e

Google Scholar

[19] S.M. Smith, B.S. Taft, J. Moulton, Contact angle measurements for advanced thermal management technologies, Frontiers in Heat and Mass Transfer (FHMT), 5 (2014) 1-9.

DOI: 10.5098/hmt.5.6

Google Scholar

[20] N. Ali, J.A. Teixeira, A. Addali, F. Al-Zubi, E. Shaban, I. Behbehani, The effect of aluminium nanocoating and water pH value on the wettability behavior of an aluminium surface, Applied Surface Science, 443 (2018) 24-30.

DOI: 10.1016/j.apsusc.2018.02.182

Google Scholar

[21] R.N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial and Engineering Chemistry, 28 (1936) 988-994.

DOI: 10.1021/ie50320a024

Google Scholar

[22] A.B.D. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Society, 40 (1944) 546-551.

DOI: 10.1039/tf9444000546

Google Scholar

[23] C. Huh, S.G. Mason, Effects of surface roughness on wetting (theoretical), J. Colloid Interface Sci., 60 (1977) 11-38.

DOI: 10.1016/0021-9797(77)90251-x

Google Scholar

[24] J. Long, P. Fan, D. Gong, D. Jiang, H. Zhang, L. Li, M. Zhong, Superhydrophobic Surfaces Fabricated by Femtosecond Laser with Tunable Water Adhesion: From Lotus Leaf to Rose Petal, ACS Applied Materials & Interfaces, 7 (2015) 9858-9865.

DOI: 10.1021/acsami.5b01870

Google Scholar

[25] G. Kumar, K.N. Prabhu, Review of non-reactive and reactive wetting of liquids on surfaces, Adv Colloid Interface Sci, 133 (2007) 61-89.

DOI: 10.1016/j.cis.2007.04.009

Google Scholar

[26] W. Yang, J. Li, P. Zhou, L. Zhu, H. Tang, Superhydrophobic copper coating: Switchable wettability, on-demand oil-water separation, and antifouling, Chemical Engineering Journal, 327 (2017) 849-854.

DOI: 10.1016/j.cej.2017.06.159

Google Scholar

[27] J. Singh, D.E. Wolfe, Review Nano and macro-structured component fabrication by electron beam-physical vapor deposition (EB-PVD), Journal of Materials Science, 40 (2005) 1-26.

DOI: 10.1007/s10853-005-5682-5

Google Scholar

[28] P. Arunkumar, U. Aarthi, M. Sribalaji, B. Mukherjee, A.K. Keshri, W.H. Tanveer, S.-W. Cha, K.S. Babu, Deposition rate dependent phase/mechanical property evolution in zirconia and ceria-zirconia thin film by EB-PVD technique, J Alloys Compd, 765 (2018) 418-427.

DOI: 10.1016/j.jallcom.2018.06.232

Google Scholar

[29] C.A. Johnson, J.A. Ruud, R. Bruce, D. Wortman, Relationships between residual stress, microstructure and mechanical properties of electron beam–physical vapor deposition thermal barrier coatings, Surface and Coatings Technology, 108-109 (1998) 80-85.

DOI: 10.1016/s0257-8972(98)00668-9

Google Scholar

[30] V. Kumar, B. Kandasubramanian, Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications, Particuology, 27 (2016) 1-28.

DOI: 10.1016/j.partic.2016.01.007

Google Scholar

[31] N. Ali, J.A. Teixeira, A. Addali, M. Saeed, F. Al-Zubi, A. Sedaghat, H. Bahzad, Deposition of Stainless Steel Thin Films: An Electron Beam Physical Vapour Deposition Approach, Materials, 12 (2019) 571.

DOI: 10.3390/ma12040571

Google Scholar

[32] J.A. Thornton, Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings, Journal of Vacuum Science and Technology, 12 (1975) 830-835.

DOI: 10.1116/1.568682

Google Scholar

[33] T. Nithyanandam, K. Palanisamy, Wettability analysis on copper substrate by emery abrasion and copper nano coating, International Journal of Mechanical and Production Engineering Research and Development, 8 (2018) 583-590.

Google Scholar

[34] W.F. Langelier, Effect of Temperature on the pH of Natural Waters, Journal (American Water Works Association), 38 (1946) 179-185.

DOI: 10.1002/j.1551-8833.1946.tb17558.x

Google Scholar

[35] Yokogawa, Technical Note TNA0924, Vigilantplant, 2009, pp.1-3.

Google Scholar

[36] T.S. Light, Temperature dependence and measurement of resistivity of pure water, Anal. Chem., 56 (1984) 1138-1142.

DOI: 10.1021/ac00271a019

Google Scholar

[37] R.D. Down, J.H. Lehr, Environmental instrumentation and analysis handbook, John Wiley & Sons2005.

Google Scholar

[38] B.G. Liptak, Analytical instrumentation, CRC Press, Pennsylvania, (1994).

Google Scholar

[39] R. Baboian, Corrosion tests and standards: application and interpretation, ASTM international, USA, (2005).

Google Scholar

[40] X. Zhang, J. Han, J.J. Plombon, A.P. Sutton, D.J. Srolovitz, J.J. Boland, Nanocrystalline copper films are never flat, Science, 357 (2017) 397-400.

DOI: 10.1126/science.aan4797

Google Scholar

[41] G. Dennler, A. Houdayer, P. Raynaud, I. Séguy, Y. Ségui, M.R. Wertheimer, Growth Modes of SiOxFilms Deposited by Evaporation and Plasma-Enhanced Chemical Vapor Deposition on Polymeric Substrates, Plasmas and Polymers, 8 (2003) 43-59.

DOI: 10.1023/a:1022865825205

Google Scholar

[42] M.R. Amirzada, A. Tatzel, V. Viereck, H. Hillmer, Surface roughness analysis of SiO2 for PECVD, PVD and IBD on different substrates, Applied Nanoscience, 6 (2016) 215-222.

DOI: 10.1007/s13204-015-0432-8

Google Scholar

[43] N.G. Semaltianos, Thermally evaporated aluminium thin films, Applied Surface Science, 183 (2001) 223-229.

DOI: 10.1016/s0169-4332(01)00565-7

Google Scholar

[44] K. Bordo, H.-G. Rubahn, Effect of deposition rate on structure and surface morphology of thin evaporated Al films on dielectrics and semiconductors, Materials Science, 18 (2012) 313-317.

DOI: 10.5755/j01.ms.18.4.3088

Google Scholar

[45] S. Yeniyol, #xf6, #xfc, kba, #x15f, #x131, N. , #xfc, fer, A. Bilir, #xc7, ak, #x131, A.F. r, M. Yeniyol, T. Ozdemir, Relative Contributions of Surface Roughness and Crystalline Structure to the Biocompatibility of Titanium Nitride and Titanium Oxide Coatings Deposited by PVD and TPS Coatings, ISRN Biomaterials, 2013 (2013) 9.

DOI: 10.5402/2013/783873

Google Scholar

[46] T.J. da Silva, J.G. Moreira, Kinetic roughening on rough substrates, Phys Rev E., 56 (1997) 4880-4883.

DOI: 10.1103/physreve.56.4880

Google Scholar

[47] A.-L. Barabási, H.E. Stanley, Fractal concepts in surface growth, Cambridge university press, New York, USA, (1995).

Google Scholar

[48] A. Steele, I. Bayer, S. Moran, A. Cannon, W.P. King, E. Loth, Conformal ZnO nanocomposite coatings on micro-patterned surfaces for superhydrophobicity, Thin Solid Films, 518 (2010) 5426-5431.

DOI: 10.1016/j.tsf.2010.03.084

Google Scholar

[49] S. Wang, K. Liu, X. Yao, L. Jiang, Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications, Chem. Rev., 115 (2015) 8230-8293.

DOI: 10.1021/cr400083y

Google Scholar

[50] K.J. Kubiak, M.C.T. Wilson, T.G. Mathia, P. Carval, Wettability versus roughness of engineering surfaces, Wear, 271 (2011) 523-528.

DOI: 10.1016/j.wear.2010.03.029

Google Scholar

[51] F.D. Petke, B.R. Ray, Temperature dependence of contact angles of liquids on polymeric solids, J. Colloid Interface Sci., 31 (1969) 216-227.

DOI: 10.1016/0021-9797(69)90329-4

Google Scholar

[52] U. Sivan, The inevitable accumulation of large ions and neutral molecules near hydrophobic surfaces and small ions near hydrophilic ones, Current Opinion in Colloid & Interface Science, 22 (2016) 1-7.

DOI: 10.1016/j.cocis.2016.02.004

Google Scholar

[53] J. Morag, M. Dishon, U. Sivan, The governing role of surface hydration in ion specific adsorption to silica: an AFM-based account of the Hofmeister universality and its reversal, Langmuir, 29 (2013) 6317-6322.

DOI: 10.1021/la400507n

Google Scholar

[54] I. Schlesinger, U. Sivan, New Information on the Hydrophobic Interaction Revealed by Frequency Modulation AFM, Langmuir, 33 (2017) 2485-2496.

DOI: 10.1021/acs.langmuir.6b03574

Google Scholar

[55] N. Schwierz, D. Horinek, U. Sivan, R.R. Netz, Reversed Hofmeister series—The rule rather than the exception, Current Opinion in Colloid & Interface Science, 23 (2016) 10-18.

DOI: 10.1016/j.cocis.2016.04.003

Google Scholar

[56] M. Mantel, J.P. Wightman, Influence of the surface chemistry on the wettability of stainless steel, Surface and Interface Analysis, 21 (1994) 595-605.

DOI: 10.1002/sia.740210902

Google Scholar

[57] F. Rupp, R.A. Gittens, L. Scheideler, A. Marmur, B.D. Boyan, Z. Schwartz, J. Geis-Gerstorfer, A review on the wettability of dental implant surfaces I: Theoretical and experimental aspects, Acta Biomaterialia, 10 (2014) 2894-2906.

DOI: 10.1016/j.actbio.2014.02.040

Google Scholar

[58] M.R.S. Shirazy, S. Blais, L.G. Fréchette, Mechanism of wettability transition in copper metal foams: From superhydrophilic to hydrophobic, Applied Surface Science, 258 (2012) 6416-6424.

DOI: 10.1016/j.apsusc.2012.03.052

Google Scholar

[59] J. Long, M. Zhong, P. Fan, D. Gong, H. Zhang, Wettability conversion of ultrafast laser structured copper surface, Journal of Laser Applications, 27 (2015) S29107.

DOI: 10.2351/1.4906477

Google Scholar

[60] J. Drelich, E. Chibowski, D.D. Meng, K. Terpilowski, Hydrophilic and superhydrophilic surfaces and materials, Soft Matter, 7 (2011) 9804-9828.

DOI: 10.1039/c1sm05849e

Google Scholar