[1]
T.M. Abou Elmaaty, A.E. Kabeel, M. Mahgoub, Corrugated plate heat exchanger review, Renewable Sustainable Energy Rev, 70 (2017) 852-860.
DOI: 10.1016/j.rser.2016.11.266
Google Scholar
[2]
L. Wang, B. Sundén, R.M. Manglik, Basic features and development of plate heat exchangers, Plate heat exchangers : design, applications and performance WIT Press, Southampton, SO40 7AA, UK, 2007, pp.1-6.
DOI: 10.1002/zamm.200890003
Google Scholar
[3]
L. Wang, B. Sundén, R.M. Manglik, Materials and manufacturing, Plate heat exchangers : design, applications and performance WIT Press, Southampton, SO40 7AA, UK, 2007, pp.41-49.
Google Scholar
[4]
J.P. Holman, Heat transfer, Ninth Edition ed., McGraw-Hill, New York, (2002).
Google Scholar
[5]
Y. Nam, Y.S. Ju, A comparative study of the morphology and wetting characteristics of micro/nanostructured Cu surfaces for phase change heat transfer applications, Journal of Adhesion Science and Technology, 27 (2013) 2163-2176.
DOI: 10.1080/01694243.2012.697783
Google Scholar
[6]
N. Ali, J.A. Teixeira, A. Addali, A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties, J. Nanomater., 2018 (2018) 33.
DOI: 10.1155/2018/6978130
Google Scholar
[7]
G. Singh Sokhal, D. Gangacharyulu, V.K. Bulasara, Influence of copper oxide nanoparticles on the thermophysical properties and performance of flat tube of vehicle cooling system, Vacuum, 157 (2018) 268-276.
DOI: 10.1016/j.vacuum.2018.08.048
Google Scholar
[8]
K.V. Wong, O. De Leon, Applications of Nanofluids: Current and Future, Adv. Mech. Eng., 2 (2010) 519659.
Google Scholar
[9]
V. Kumar, A.K. Tiwari, S.K. Ghosh, Application of nanofluids in plate heat exchanger: A review, Energy Conversion and Management, 105 (2015) 1017-1036.
DOI: 10.1016/j.enconman.2015.08.053
Google Scholar
[10]
G. Huminic, A. Huminic, Application of nanofluids in heat exchangers: A review, Renewable Sustainable Energy Rev, 16 (2012) 5625-5638.
DOI: 10.1016/j.rser.2012.05.023
Google Scholar
[11]
A. Durmuş, H. Benli, İ. Kurtbaş, H. Gül, Investigation of heat transfer and pressure drop in plate heat exchangers having different surface profiles, Int. J. Heat Mass Transf., 52 (2009) 1451-1457.
DOI: 10.1016/j.ijheatmasstransfer.2008.07.052
Google Scholar
[12]
M.M. Abu-Khader, Plate heat exchangers: Recent advances, Renewable Sustainable Energy Rev, 16 (2012) 1883-1891.
DOI: 10.1016/j.rser.2012.01.009
Google Scholar
[13]
J. Zhang, X. Zhu, M.E. Mondejar, F. Haglind, A review of heat transfer enhancement techniques in plate heat exchangers, Renewable Sustainable Energy Rev, 101 (2019) 305-328.
DOI: 10.1016/j.rser.2018.11.017
Google Scholar
[14]
Y. Takata, S. Hidaka, M. Masuda, T. Ito, Pool boiling on a superhydrophilic surface, International Journal of Energy Research, 27 (2003) 111-119.
DOI: 10.1002/er.861
Google Scholar
[15]
C. Choi, M. Kim, Wettability effects on heat transfer, Two Phase Flow, Phase Change and Numerical Modeling, Intechopen2011.
DOI: 10.5772/19512
Google Scholar
[16]
T.H. Kim, Y.S. Chang, B.H. Kang, Regeneration performance of liquid desiccant on the surface of a plate-type heat exchanger, Journal of Thermal Science and Technology, 11 (2016).
DOI: 10.1299/jtst.2016jtst0032
Google Scholar
[17]
Y. Yuan, T.R. Lee, Contact angle and wetting properties, Springer Series in Surface Sciences, 51 (2013) 34.
Google Scholar
[18]
E.Y. Gatapova, A.M. Shonina, A.I. Safonov, V.S. Sulyaeva, O.A. Kabov, Evaporation dynamics of a sessile droplet on glass surfaces with fluoropolymer coatings: focusing on the final stage of thin droplet evaporation, Soft Matter, 14 (2018) 1811-1821.
DOI: 10.1039/c7sm02192e
Google Scholar
[19]
S.M. Smith, B.S. Taft, J. Moulton, Contact angle measurements for advanced thermal management technologies, Frontiers in Heat and Mass Transfer (FHMT), 5 (2014) 1-9.
DOI: 10.5098/hmt.5.6
Google Scholar
[20]
N. Ali, J.A. Teixeira, A. Addali, F. Al-Zubi, E. Shaban, I. Behbehani, The effect of aluminium nanocoating and water pH value on the wettability behavior of an aluminium surface, Applied Surface Science, 443 (2018) 24-30.
DOI: 10.1016/j.apsusc.2018.02.182
Google Scholar
[21]
R.N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial and Engineering Chemistry, 28 (1936) 988-994.
DOI: 10.1021/ie50320a024
Google Scholar
[22]
A.B.D. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Society, 40 (1944) 546-551.
DOI: 10.1039/tf9444000546
Google Scholar
[23]
C. Huh, S.G. Mason, Effects of surface roughness on wetting (theoretical), J. Colloid Interface Sci., 60 (1977) 11-38.
DOI: 10.1016/0021-9797(77)90251-x
Google Scholar
[24]
J. Long, P. Fan, D. Gong, D. Jiang, H. Zhang, L. Li, M. Zhong, Superhydrophobic Surfaces Fabricated by Femtosecond Laser with Tunable Water Adhesion: From Lotus Leaf to Rose Petal, ACS Applied Materials & Interfaces, 7 (2015) 9858-9865.
DOI: 10.1021/acsami.5b01870
Google Scholar
[25]
G. Kumar, K.N. Prabhu, Review of non-reactive and reactive wetting of liquids on surfaces, Adv Colloid Interface Sci, 133 (2007) 61-89.
DOI: 10.1016/j.cis.2007.04.009
Google Scholar
[26]
W. Yang, J. Li, P. Zhou, L. Zhu, H. Tang, Superhydrophobic copper coating: Switchable wettability, on-demand oil-water separation, and antifouling, Chemical Engineering Journal, 327 (2017) 849-854.
DOI: 10.1016/j.cej.2017.06.159
Google Scholar
[27]
J. Singh, D.E. Wolfe, Review Nano and macro-structured component fabrication by electron beam-physical vapor deposition (EB-PVD), Journal of Materials Science, 40 (2005) 1-26.
DOI: 10.1007/s10853-005-5682-5
Google Scholar
[28]
P. Arunkumar, U. Aarthi, M. Sribalaji, B. Mukherjee, A.K. Keshri, W.H. Tanveer, S.-W. Cha, K.S. Babu, Deposition rate dependent phase/mechanical property evolution in zirconia and ceria-zirconia thin film by EB-PVD technique, J Alloys Compd, 765 (2018) 418-427.
DOI: 10.1016/j.jallcom.2018.06.232
Google Scholar
[29]
C.A. Johnson, J.A. Ruud, R. Bruce, D. Wortman, Relationships between residual stress, microstructure and mechanical properties of electron beam–physical vapor deposition thermal barrier coatings, Surface and Coatings Technology, 108-109 (1998) 80-85.
DOI: 10.1016/s0257-8972(98)00668-9
Google Scholar
[30]
V. Kumar, B. Kandasubramanian, Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications, Particuology, 27 (2016) 1-28.
DOI: 10.1016/j.partic.2016.01.007
Google Scholar
[31]
N. Ali, J.A. Teixeira, A. Addali, M. Saeed, F. Al-Zubi, A. Sedaghat, H. Bahzad, Deposition of Stainless Steel Thin Films: An Electron Beam Physical Vapour Deposition Approach, Materials, 12 (2019) 571.
DOI: 10.3390/ma12040571
Google Scholar
[32]
J.A. Thornton, Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings, Journal of Vacuum Science and Technology, 12 (1975) 830-835.
DOI: 10.1116/1.568682
Google Scholar
[33]
T. Nithyanandam, K. Palanisamy, Wettability analysis on copper substrate by emery abrasion and copper nano coating, International Journal of Mechanical and Production Engineering Research and Development, 8 (2018) 583-590.
Google Scholar
[34]
W.F. Langelier, Effect of Temperature on the pH of Natural Waters, Journal (American Water Works Association), 38 (1946) 179-185.
DOI: 10.1002/j.1551-8833.1946.tb17558.x
Google Scholar
[35]
Yokogawa, Technical Note TNA0924, Vigilantplant, 2009, pp.1-3.
Google Scholar
[36]
T.S. Light, Temperature dependence and measurement of resistivity of pure water, Anal. Chem., 56 (1984) 1138-1142.
DOI: 10.1021/ac00271a019
Google Scholar
[37]
R.D. Down, J.H. Lehr, Environmental instrumentation and analysis handbook, John Wiley & Sons2005.
Google Scholar
[38]
B.G. Liptak, Analytical instrumentation, CRC Press, Pennsylvania, (1994).
Google Scholar
[39]
R. Baboian, Corrosion tests and standards: application and interpretation, ASTM international, USA, (2005).
Google Scholar
[40]
X. Zhang, J. Han, J.J. Plombon, A.P. Sutton, D.J. Srolovitz, J.J. Boland, Nanocrystalline copper films are never flat, Science, 357 (2017) 397-400.
DOI: 10.1126/science.aan4797
Google Scholar
[41]
G. Dennler, A. Houdayer, P. Raynaud, I. Séguy, Y. Ségui, M.R. Wertheimer, Growth Modes of SiOxFilms Deposited by Evaporation and Plasma-Enhanced Chemical Vapor Deposition on Polymeric Substrates, Plasmas and Polymers, 8 (2003) 43-59.
DOI: 10.1023/a:1022865825205
Google Scholar
[42]
M.R. Amirzada, A. Tatzel, V. Viereck, H. Hillmer, Surface roughness analysis of SiO2 for PECVD, PVD and IBD on different substrates, Applied Nanoscience, 6 (2016) 215-222.
DOI: 10.1007/s13204-015-0432-8
Google Scholar
[43]
N.G. Semaltianos, Thermally evaporated aluminium thin films, Applied Surface Science, 183 (2001) 223-229.
DOI: 10.1016/s0169-4332(01)00565-7
Google Scholar
[44]
K. Bordo, H.-G. Rubahn, Effect of deposition rate on structure and surface morphology of thin evaporated Al films on dielectrics and semiconductors, Materials Science, 18 (2012) 313-317.
DOI: 10.5755/j01.ms.18.4.3088
Google Scholar
[45]
S. Yeniyol, #xf6, #xfc, kba, #x15f, #x131, N. , #xfc, fer, A. Bilir, #xc7, ak, #x131, A.F. r, M. Yeniyol, T. Ozdemir, Relative Contributions of Surface Roughness and Crystalline Structure to the Biocompatibility of Titanium Nitride and Titanium Oxide Coatings Deposited by PVD and TPS Coatings, ISRN Biomaterials, 2013 (2013) 9.
DOI: 10.5402/2013/783873
Google Scholar
[46]
T.J. da Silva, J.G. Moreira, Kinetic roughening on rough substrates, Phys Rev E., 56 (1997) 4880-4883.
DOI: 10.1103/physreve.56.4880
Google Scholar
[47]
A.-L. Barabási, H.E. Stanley, Fractal concepts in surface growth, Cambridge university press, New York, USA, (1995).
Google Scholar
[48]
A. Steele, I. Bayer, S. Moran, A. Cannon, W.P. King, E. Loth, Conformal ZnO nanocomposite coatings on micro-patterned surfaces for superhydrophobicity, Thin Solid Films, 518 (2010) 5426-5431.
DOI: 10.1016/j.tsf.2010.03.084
Google Scholar
[49]
S. Wang, K. Liu, X. Yao, L. Jiang, Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications, Chem. Rev., 115 (2015) 8230-8293.
DOI: 10.1021/cr400083y
Google Scholar
[50]
K.J. Kubiak, M.C.T. Wilson, T.G. Mathia, P. Carval, Wettability versus roughness of engineering surfaces, Wear, 271 (2011) 523-528.
DOI: 10.1016/j.wear.2010.03.029
Google Scholar
[51]
F.D. Petke, B.R. Ray, Temperature dependence of contact angles of liquids on polymeric solids, J. Colloid Interface Sci., 31 (1969) 216-227.
DOI: 10.1016/0021-9797(69)90329-4
Google Scholar
[52]
U. Sivan, The inevitable accumulation of large ions and neutral molecules near hydrophobic surfaces and small ions near hydrophilic ones, Current Opinion in Colloid & Interface Science, 22 (2016) 1-7.
DOI: 10.1016/j.cocis.2016.02.004
Google Scholar
[53]
J. Morag, M. Dishon, U. Sivan, The governing role of surface hydration in ion specific adsorption to silica: an AFM-based account of the Hofmeister universality and its reversal, Langmuir, 29 (2013) 6317-6322.
DOI: 10.1021/la400507n
Google Scholar
[54]
I. Schlesinger, U. Sivan, New Information on the Hydrophobic Interaction Revealed by Frequency Modulation AFM, Langmuir, 33 (2017) 2485-2496.
DOI: 10.1021/acs.langmuir.6b03574
Google Scholar
[55]
N. Schwierz, D. Horinek, U. Sivan, R.R. Netz, Reversed Hofmeister series—The rule rather than the exception, Current Opinion in Colloid & Interface Science, 23 (2016) 10-18.
DOI: 10.1016/j.cocis.2016.04.003
Google Scholar
[56]
M. Mantel, J.P. Wightman, Influence of the surface chemistry on the wettability of stainless steel, Surface and Interface Analysis, 21 (1994) 595-605.
DOI: 10.1002/sia.740210902
Google Scholar
[57]
F. Rupp, R.A. Gittens, L. Scheideler, A. Marmur, B.D. Boyan, Z. Schwartz, J. Geis-Gerstorfer, A review on the wettability of dental implant surfaces I: Theoretical and experimental aspects, Acta Biomaterialia, 10 (2014) 2894-2906.
DOI: 10.1016/j.actbio.2014.02.040
Google Scholar
[58]
M.R.S. Shirazy, S. Blais, L.G. Fréchette, Mechanism of wettability transition in copper metal foams: From superhydrophilic to hydrophobic, Applied Surface Science, 258 (2012) 6416-6424.
DOI: 10.1016/j.apsusc.2012.03.052
Google Scholar
[59]
J. Long, M. Zhong, P. Fan, D. Gong, H. Zhang, Wettability conversion of ultrafast laser structured copper surface, Journal of Laser Applications, 27 (2015) S29107.
DOI: 10.2351/1.4906477
Google Scholar
[60]
J. Drelich, E. Chibowski, D.D. Meng, K. Terpilowski, Hydrophilic and superhydrophilic surfaces and materials, Soft Matter, 7 (2011) 9804-9828.
DOI: 10.1039/c1sm05849e
Google Scholar