Papers by Keyword: Finger Rehabilitation

Paper TitlePage

Abstract: Functional recovery of upper limb after stroke is crucial to restore the ability to perform activities of daily living (ADL). This paper presents a robotic rehabilitation approach based on repetitive exercise aimed to help stroke survivors relearn the skills of finger flexion and extension at the comfort of their home. The finger rehabilitation device deploys Shape Memory Alloy (SMA) wires as an actuation approach to deliver three degrees of freedom per finger module. The advantages and challenges of using SMA wires rather than conventional actuators are discussed. A prototype of the finger rehabilitation device was built using PLA material and experiments have been conducted for the purposes of feasibility study. Tests conducted on the wires suggest that it has to have sufficient weight and also has to be stretching at high temperature rather than room temperature in order to have an optimum range of recovery.
883
Abstract: Most stroke patients who have lost the ability to use their fingers do not recover the functions of the fingers in their activity of daily living (ADL). This paper presents a novel approach in finger rehabilitation for acute paralysed stroke survivors. Based on repetitive exercise concept, the device is designed to provide support for fingers to do flexion and extension movements according to the patients range of motion. A conceptual design of the device is proposed after considering the current mechanism and control from similar current devices published and commercialised. A comparison between 4 existing main working mechanisms: (1) Pneumatic Cylinders, (2) Artificial Rubber Muscles, (3) Linkage Mechanism, (4) Cable-Driven Mechanism is also provided in this paper. The key for designing the device is home-based practice, easy to use and affordable. Further investigation and experiments on the proposed: Cable Actuated Finger Exoskeleton (CAFEx) are currently still in progress.
604
Abstract: Continuous Passive Motion (CPM) has been confirmed as an effective clinical therapy for finger neurological rehabilitation. In this study a finger rehabilitation training robot is designed based on CPM rehabilitation theory. This paper presents the design and simulation of the finger rehabilitation robot. Based on the finger structure and movement trajectory analysis, OPTOTRAK CERTUS motion capture system is used to acquire trajectory parameters of normal human finger movement. Atlas method is employed to accomplish mechanism dimensional synthesis of the finger rehabilitation training robot. The feasibility of the mechanism is verified using a modeling and simulation method with SIMULINK software.
805
Showing 1 to 3 of 3 Paper Titles