[1]
W.R. Stahel, The circular economy, Nature. 531 (2016) 435–438.
Google Scholar
[2]
G. Kaur, K. Uisan, K. Lun Ong, C. Ki Lin, Recent Trends in Green and Sustainable Chemistry & Waste Valorisation: Rethinking Plastics in a circular economy, Curr. Opin. Green Sustain. Chem. 9 (2018) 30–39.
DOI: 10.1016/j.cogsc.2017.11.003
Google Scholar
[3]
V. Rognoli, C. Ayala Garcia, S. Parisi, The emotional value of Do-it-Yourself materials, In 10 International Conference of Design & Emotion. Amsterdam. (2016) 633-641.
Google Scholar
[4]
C. Cecchini, M. Petroni, The Rapid Plastic Revolution: Superstrong Polymers and Biomaterials, Plastic Days Materials & Design. 2 (2015) 36-61.
Google Scholar
[5]
C. Siriwong, S. Boopasiri, V. Jantarapibun, B. Kongsook, S. Pattanawanidchai, P. Sae-Oui, Properties of natural rubber filled with untreated and treated spent coffee grounds, J. Appl. Polym. Sci. 135(2018) 46-60.
DOI: 10.1002/app.46060
Google Scholar
[6]
H. Essabir, M. Raji, S.A. Laaziz, Rodrique, D. Bouhfid R., A. El Kacem Qaiss, Thermo-mechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds, Compos. Part B Eng. 149 (2018) 1–11.
DOI: 10.1016/j.compositesb.2018.05.020
Google Scholar
[7]
H. Moustafa, C. Guizani, C. Dupont, V. Martin, M. Jeguirim, A. Dufresne, Utilization of Torrefied Coffee Grounds as Reinforcing Agent to Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications, ACS Sustain. Chem. Eng. 5 (2017) 1906–(1916).
DOI: 10.1021/acssuschemeng.6b02633
Google Scholar
[8]
H.K. Lee, Y.G. Park, T. Jeong, Y.S. Song, Green nanocomposites filled with spent coffee grounds, J. Appl. Polym. Sci. 132 (2015) 42043.
DOI: 10.1002/app.42043
Google Scholar
[9]
H. Wu, W. Hu, Y. Zhang, L. Huang, J. Zhang, S. Tan, X. Cai, X. Liao, Effect of oil extraction on properties of spent coffee ground–plastic composites, J. Mater. Sci. 51 (2016) 10205–10214.
DOI: 10.1007/s10853-016-0248-2
Google Scholar
[10]
N. Zarrinbakhsh, T. Wang, A. Rodriguez-Uribe, M. Misra, A.K. Mohanty, Characterization of wastes and coproducts from the coffee industry for composite material production, BioResources. 11 (2016) 7637–7653.
DOI: 10.15376/biores.11.3.7637-7653
Google Scholar
[11]
R. Campos-Vega, G. Loarca-Piña, H.A. Vergara-Castañeda, B.D. Oomah, Spent coffee grounds: A review on current research and future prospects, Trends Food Sci. Technol. 45 (2015) 24–36.
DOI: 10.1016/j.tifs.2015.04.012
Google Scholar
[12]
P. Esquivel, V.M. Jiménez Functional properties of coffee and coffee by-products, Food Res. Int, 16 (2012) 488–495.
DOI: 10.1016/j.foodres.2011.05.028
Google Scholar
[13]
C.Cecchini, Bioplastics made from upcycled food waste. Prospects for their use in the field of design, The Design Journal. 20 (2017) 1596-1610.
DOI: 10.1080/14606925.2017.1352684
Google Scholar
[14]
M.V. Cruz, A. Paiva, P. Lisboa, F. Freitas, V.D. Alves, S. Barreiros, S.Barreiros, M.A.M. Reis, Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology, Bioresour. Technol. 157 (2014) 360-363.
DOI: 10.1016/j.biortech.2014.02.013
Google Scholar
[15]
S.M.F. Bessada, R.C. Alves, M.B. Oliveira, Coffee Silverskin: A Review on Potential Cosmetic Applications, Cosmetics. 5 (2018) 5.
DOI: 10.3390/cosmetics5010005
Google Scholar
[16]
S.M.F. Bessada, R.C. Alves, A.S. Costa, M.A. Nunes, M.B. Oliveira, Coffea canephora silverskin from different geographical origins: A comparative study, Sci. Total. Environ. 645 (2018) 1021–1028.
DOI: 10.1016/j.scitotenv.2018.07.201
Google Scholar
[17]
F. Sarasini, J. Tirillò, A. Zuorro, G. Maffei, R. Lavecchia, D. Puglia, F. Dominici, F. Luzi, T. Valente, L. Torre, Recycling coffee silverskin in sustainable composites based on a poly(butylene adipate-co-terephthalate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix, Ind. Crops Prod. 118 (2018) 311–320.
DOI: 10.1016/j.indcrop.2018.03.070
Google Scholar
[18]
C. Kourmentza, C.N. Economou, P. Tsafrakidou, M. Kornaros, Spent coffee grounds make much more than waste: exploring recent advances and future exploitation strategies for the valorization of an emerging food waste stream, J. Clean. Prod. 172 (2018) 980-992.
DOI: 10.1016/j.jclepro.2017.10.088
Google Scholar
[19]
S. Obruca, P. Benesova, S. Petrik, J. Oborna, R. Prikryl, I. Marova, Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds, Process Biochem. 49 (2014) 1409-1414.
DOI: 10.1016/j.procbio.2014.05.013
Google Scholar
[20]
M.U. Wahit, A. Hassan, N. I. Akos, K. Kunasegeran, Mechanical, thermal and chemical resistance of epoxidized natural rubber toughened polylactic acid blends, Sains Malaysiana. 44(11) (2015) 1615-1623.
Google Scholar