Design and Research of Eco-Friendly Polymer Composites

Article Preview

Abstract:

The ways of using coffee grounds as fillers for biodegradable polymer material and dishes from it is shown. Research of chemical, physical, mechanical and operational properties of new high-filler composite based on polylactide are carried out. It is also noticed, that using coffee grounds as fillers for polymer materials can decrease the total volume of it at landfills faster than any other method of coffee ground reuse.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1006)

Pages:

259-266

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.R. Stahel, The circular economy, Nature. 531 (2016) 435–438.

Google Scholar

[2] G. Kaur, K. Uisan, K. Lun Ong, C. Ki Lin, Recent Trends in Green and Sustainable Chemistry & Waste Valorisation: Rethinking Plastics in a circular economy, Curr. Opin. Green Sustain. Chem. 9 (2018) 30–39.

DOI: 10.1016/j.cogsc.2017.11.003

Google Scholar

[3] V. Rognoli, C. Ayala Garcia, S. Parisi, The emotional value of Do-it-Yourself materials, In 10 International Conference of Design & Emotion. Amsterdam. (2016) 633-641.

Google Scholar

[4] C. Cecchini, M. Petroni, The Rapid Plastic Revolution: Superstrong Polymers and Biomaterials, Plastic Days Materials & Design. 2 (2015) 36-61.

Google Scholar

[5] C. Siriwong, S. Boopasiri, V. Jantarapibun, B. Kongsook, S. Pattanawanidchai, P. Sae-Oui, Properties of natural rubber filled with untreated and treated spent coffee grounds, J. Appl. Polym. Sci. 135(2018) 46-60.

DOI: 10.1002/app.46060

Google Scholar

[6] H. Essabir, M. Raji, S.A. Laaziz, Rodrique, D. Bouhfid R., A. El Kacem Qaiss, Thermo-mechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds, Compos. Part B Eng. 149 (2018) 1–11.

DOI: 10.1016/j.compositesb.2018.05.020

Google Scholar

[7] H. Moustafa, C. Guizani, C. Dupont, V. Martin, M. Jeguirim, A. Dufresne, Utilization of Torrefied Coffee Grounds as Reinforcing Agent to Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications, ACS Sustain. Chem. Eng. 5 (2017) 1906–(1916).

DOI: 10.1021/acssuschemeng.6b02633

Google Scholar

[8] H.K. Lee, Y.G. Park, T. Jeong, Y.S. Song, Green nanocomposites filled with spent coffee grounds, J. Appl. Polym. Sci. 132 (2015) 42043.

DOI: 10.1002/app.42043

Google Scholar

[9] H. Wu, W. Hu, Y. Zhang, L. Huang, J. Zhang, S. Tan, X. Cai, X. Liao, Effect of oil extraction on properties of spent coffee ground–plastic composites, J. Mater. Sci. 51 (2016) 10205–10214.

DOI: 10.1007/s10853-016-0248-2

Google Scholar

[10] N. Zarrinbakhsh, T. Wang, A. Rodriguez-Uribe, M. Misra, A.K. Mohanty, Characterization of wastes and coproducts from the coffee industry for composite material production, BioResources. 11 (2016) 7637–7653.

DOI: 10.15376/biores.11.3.7637-7653

Google Scholar

[11] R. Campos-Vega, G. Loarca-Piña, H.A. Vergara-Castañeda, B.D. Oomah, Spent coffee grounds: A review on current research and future prospects, Trends Food Sci. Technol. 45 (2015) 24–36.

DOI: 10.1016/j.tifs.2015.04.012

Google Scholar

[12] P. Esquivel, V.M. Jiménez Functional properties of coffee and coffee by-products, Food Res. Int, 16 (2012) 488–495.

DOI: 10.1016/j.foodres.2011.05.028

Google Scholar

[13] C.Cecchini, Bioplastics made from upcycled food waste. Prospects for their use in the field of design, The Design Journal. 20 (2017) 1596-1610.

DOI: 10.1080/14606925.2017.1352684

Google Scholar

[14] M.V. Cruz, A. Paiva, P. Lisboa, F. Freitas, V.D. Alves, S. Barreiros, S.Barreiros, M.A.M. Reis, Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology, Bioresour. Technol. 157 (2014) 360-363.

DOI: 10.1016/j.biortech.2014.02.013

Google Scholar

[15] S.M.F. Bessada, R.C. Alves, M.B. Oliveira, Coffee Silverskin: A Review on Potential Cosmetic Applications, Cosmetics. 5 (2018) 5.

DOI: 10.3390/cosmetics5010005

Google Scholar

[16] S.M.F. Bessada, R.C. Alves, A.S. Costa, M.A. Nunes, M.B. Oliveira, Coffea canephora silverskin from different geographical origins: A comparative study, Sci. Total. Environ. 645 (2018) 1021–1028.

DOI: 10.1016/j.scitotenv.2018.07.201

Google Scholar

[17] F. Sarasini, J. Tirillò, A. Zuorro, G. Maffei, R. Lavecchia, D. Puglia, F. Dominici, F. Luzi, T. Valente, L. Torre, Recycling coffee silverskin in sustainable composites based on a poly(butylene adipate-co-terephthalate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix, Ind. Crops Prod. 118 (2018) 311–320.

DOI: 10.1016/j.indcrop.2018.03.070

Google Scholar

[18] C. Kourmentza, C.N. Economou, P. Tsafrakidou, M. Kornaros, Spent coffee grounds make much more than waste: exploring recent advances and future exploitation strategies for the valorization of an emerging food waste stream, J. Clean. Prod. 172 (2018) 980-992.

DOI: 10.1016/j.jclepro.2017.10.088

Google Scholar

[19] S. Obruca, P. Benesova, S. Petrik, J. Oborna, R. Prikryl, I. Marova, Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds, Process Biochem. 49 (2014) 1409-1414.

DOI: 10.1016/j.procbio.2014.05.013

Google Scholar

[20] M.U. Wahit, A. Hassan, N. I. Akos, K. Kunasegeran, Mechanical, thermal and chemical resistance of epoxidized natural rubber toughened polylactic acid blends, Sains Malaysiana. 44(11) (2015) 1615-1623.

Google Scholar