Nondestructive Prediction of Optimal Harvest Time of Cherry Tomatoes Using VIS-NIR Spectroscopy and PLSR Calibration


Article Preview

In situ determination of optimal harvest time of tomatoes is of value for growers to optimize fruit picking schedule. This study evaluates the feasibility of using visible and near infrared (VIS-NIR) spectroscopy to make an intact estimation of harvest time of tomatoes. A mobile, fibre-type, AgroSpec VIS-NIR spectrophotometer (Tec5, Germany), with a spectral range of 350-2200 nm, was used for spectral acquisition of tomatoes in reflection mode. The harvest time of tomatoes was measured by the days before harvest. After dividing spectra into a calibration set (70%) and an independent prediction set (30%), spectra in the calibration set were subjected to a partial least-squares regression (PLSR) with leave-one-out cross validation to establish calibration models. Validation of calibration models on the independent prediction set indicates that the best model can produce excellent prediction accuracy with coefficient of determination (R2) of 0.90, root-mean-square error of prediction (RMSEP) of 2.5 days and residual prediction deviation (RPD) of 3.01. It is concluded that VIS-NIR spectroscopy coupled with PLSR models can be adopted successfully for in situ determination of optimal harvest time of tomatoes, which allows for automatic fruit harvest by a horticultural robot.



Edited by:

Elwin Mao and Linli Xu






H. Q. Yang "Nondestructive Prediction of Optimal Harvest Time of Cherry Tomatoes Using VIS-NIR Spectroscopy and PLSR Calibration", Advanced Engineering Forum, Vol. 1, pp. 92-96, 2011

Online since:

September 2011



[1] A. Peirs, A. Schenk, B.M. Nicolaï, Effect of natural variability among apples on the accuracy of VIS-NIR calibration models for optimal harvest date predictions, Postharvest Biology and Technology 35(2005)1-13.

DOI: 10.1016/j.postharvbio.2004.05.010

[2] Y. Makino, M. Ichimura, S. Oshita, Y. Kawagoe, H. Yamanaka, Estimation of oxygen uptake rate of tomato (Lycopersicon esculentum Mill. ) fruits by artificial neural networks modeled using near-infrared spectral absorbance and fruit mass, Food Chemistry 121(2010).

DOI: 10.1016/j.foodchem.2009.12.043

[3] M.E. Saltveit Jr, Determining tomato fruit maturity with nondestructive in vivo nuclear magnetic resonance imaging, Postharvest Biology and Technology 1(1991)153-159.

DOI: 10.1016/0925-5214(91)90007-x

[4] S. Schotte, N. De Belie, J. De Baerdemaeker, Acoustic impulse-response technique for evaluation and modelling of firmness of tomato fruit, Postharvest Biology and Technology 17 (1999)105-115.

DOI: 10.1016/s0925-5214(99)00041-1

[5] A.H. Gómez, G. Hu, J. Wang, A.G. Pereira, Evaluation of tomato maturity by electronic nose, Computers and Electronics in Agriculture 54(2006)44-52.

DOI: 10.1016/j.compag.2006.07.002

[6] M. Musse, S. Quellec, M. Cambert, M.F. Devaux, M. Lahaye, F. Mariette, Monitoring the postharvest ripening of tomato fruit using quantitative MRI and NMR relaxometry, Postharvest Biology and Technology 53(2009)22-35.

DOI: 10.1016/j.postharvbio.2009.02.004

[7] A.M.K. Pedro, M.M.C. Ferreira, Simultaneously calibrating solids, sugars and acidity of tomato products using PLS2 and NIR spectroscopy, Analytica Chimica Acta 595(2007)221- 227.

DOI: 10.1016/j.aca.2007.03.036

[8] K. Flores, M.T. Sánchez, D. Pérez-Marín, J.E. Guerrero, A. Garrido-Varo, Feasibility in NIRS instruments for predicting internal quality in intact tomato, Journal of Food Engineering 91 (2009)311-318.

DOI: 10.1016/j.jfoodeng.2008.09.013

[9] R. Choudhary, T.J. Bowser, P. Weckler, N.O. Maness, W. McGlynn, Rapid estimation of lycopene concentration in watermelon and tomato puree by fiber optic visible reflectance spectroscopy, Postharvest Biology and Technology 52(2009)103-109.

DOI: 10.1016/j.postharvbio.2008.10.002

[10] A. Clément, M. Dorais, M. Vernon, Multivariate Approach to the Measurement of Tomato Maturity and Gustatory Attributes and Their Rapid Assessment by Vis−NIR Spectroscopy, Jounal of Agricultural & Food Chemistry 56(2008)1538-1544.

DOI: 10.1021/jf072182n

[11] A. Peirs, J. Lammertyn, K. Ooms, B.M. Nicolaï, Prediction of the optimal picking date of different apple cultivars by means of VIS/NIR-spectroscopy. Postharvest Biology and Technology 21(2001)189-199.

DOI: 10.1016/s0925-5214(00)00145-9

[12] P.C. Williams, Variables affecting near-infrared reflectance spectroscopic analysis, in: P.C. Williams, K.H. Norris (eds. ) AACC, St. Paul, MN, 1987, pp.143-166.

[13] A.M. Mouazen, J.D. Baerdemaeker, H. Ramon, Effect of wavelength range on the measurement accuracy of some selected soil constituents using visual-near infrared spectroscopy, Journal of Near Infrared Spectroscopy 14(2006)189-199.

DOI: 10.1255/jnirs.614

[14] L.M.M. Tijskens, P.E. Zerbini, R.E. Schouten, M. Vanoli, S. Jacob, M. Grassi, R. Cubeddu, L. Spinelli, A. Torricelli, Assessing harvest maturity in nectarines, Postharvest Biology and Technology 45(2007)204-213.

DOI: 10.1016/j.postharvbio.2007.01.014

[15] V. Ziosi, M. Noferini, G. Fiori, A. Tadiello, L. Trainotti, G. Casadoro, G. Costa, A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit, Postharvest Biology and Technology 49(2008)319-329.

DOI: 10.1016/j.postharvbio.2008.01.017

[16] S.H. Choi, S.H. Lee, H.J. Kim, I.S. Lee, N. Kozukue, C.E. Levin, M. Friedman, Changes in Free Amino Acid, Phenolic, Chlorophyll, Carotenoid, and Glycoalkaloid Contents in Tomatoes during 11 Stages of Growth and Inhibition of Cervical and Lung Human Cancer Cells by Green Tomato Extracts, Journal of Agricultural and Food Chemistry 58(2010).

DOI: 10.1021/jf100162j

[17] I. Murry, P.C. Williams, Chemical Principals of Near-infrared technology, in: P.C. Williams, K.H. Norris (eds. ) AACC, St. Paul, MN, 1987, pp.17-34.

[18] D. Pérez-Marín, M.T. Sánchez, P. Paz, M.A. Soriano, J.E. Guerrero, A. Garrido-Varo, Non-destructive determination of quality parameters in nectarines during on-tree ripening and postharvest storage, Postharvest Biology and Technology 52(2009).

DOI: 10.1016/j.postharvbio.2008.10.005

In order to see related information, you need to Login.