Numerical Investigation of a Friction Ventilator for Different Geometrical Setups


Article Preview

Conventional ventilation systems with heat recovery used for building aeration exhibit characteristic disadvantages arising from their operating principle such as noise generation from bladed ventilators or remarkable pressure losses generated by heat exchangers. A novel concept that combines ventilators and heat exchanger in one compact friction ventilator that rotates in two separated ducts producing two opposed airflows and transferring thermal energy from the higher temperature airflow to the lower temperature level can overcome the mentioned shortcomings. In order to demonstrate the feasibility of a friction ventilator to operate as ventilation system with heat recovery computational fluid dynamics were used to analyze the resulting pressure jump and volume flow for different geometrical setups. An extensive grid dependency study for a defined operating point that represents the typical use has been carried out in order to improve the numerical results. Furthermore, the results were compared to experimental data whenever possible.



Edited by:

Jörg Franke and Markus Michl




J. Praß et al., "Numerical Investigation of a Friction Ventilator for Different Geometrical Setups", Advanced Engineering Forum, Vol. 19, pp. 35-42, 2016

Online since:

October 2016




* - Corresponding Author

[1] P. Taylor, M. Francoeur, O. Lavagne d'Ortigue, C. Tam, and N. Trudeau, Worldwide Trends in Energy Use and Efficiency. Paris: International Energy Agency (IEA), (2008).

[2] J. Zarbian and J. Zarbian, Wohnungslüftung Berlin., [Online]. Available: http: /www. wohnungslueftung-berlin. de/wohnungslueftung-mit-waermerueckgewinnung. html#zentral. [Accessed: 20-Jun-2016].

[3] C. Bakeberg, M. Becher, S. Becker, R. Pauer, and E. Schlücker, Vorrichtung zur Förderung zweier Fluidströme, WO 2015/007351 A1, (2015).

[4] S. Becker, T. Beede, and R. Pauer, Entwicklung eines neuartigen Gerätes zur dezentralen Be- und Entlüftung von Räumen mit Wärmerückgewinn, in Strömungstechnische Tagung 2014, (2014).

[5] A. Renz, M. Becher, S. Becker, and R. Pauer, Regenerative heat exchanger with flow friction ventilator, in Turbulence, Heat and Mass Transfer, 2015, vol. 8, p.907–910.

[6] J. Praß, Untersuchung einer dezentralen Raumbelüftungsanlage mit Wärmerückgewinnung mittels zweifach teilbeaufschlagtem, mehrflutigem Querstromreibungsventilator, in Green Factory Bavaria Kolloquium, (2015).

[7] W. Rice, Tesla Turbomachinery, in Handbook of turbomachinery, 2nd ed., E. Logan, Ed. New York: Dekker, 2003, p.861–874.

[8] D. Nendl, Eine theoretische Betrachtung der Reibungsturbomaschinen von Nikola Tesla, Rheinisch-Westfälische Technische Hochschule Aachen, (1966).

[9] S. aus der Wiesche and C. Helcig, Convective Heat Transfer From Rotating Disks Subjected To Streams Of Air, 1st ed. Heidelberg: Springer, (2016).


[10] T. D. Nguyen and S. Harmand, Heat transfer and vortical structures around a rotating cylinder with a spanwise disk and low-velocity crossflow, Int. J. Heat Mass Transf., vol. 64, p.1014–1030, (2013).


[11] F. R. Menter, Zonal Two Equation k-omega, Turbulence Models for Aerodynamic Flows, AIAA Pap., no. 2906, p.21, (1993).

[12] F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., vol. 32, no. 8, p.1598–1605, (1994).


[13] F. R. Menter, M. Kuntz, and R. Langtry, Ten Years of Industrial Experience with the SST Turbulence Model, Turbul. Heat Mass Transf. 4, vol. 4, p.625–632, (2003).

[14] R. B. Langtry, A Correlation-Based Transition Model Using Local Variables, Universität Stuttgart, (2006).

[15] F. R. Menter, R. Langtry, S. Völker, and P. G. Huang, Transition Modelling for General Purpose CFD Codes, Flow Turbul. Combust, vol. 77, p.277–303, (2006).


[16] M. Casey and T. Wintergerste, Special Interst Group on Quality and Trust in Industrial CFD, Best Practice Guidelines, 1st ed. ERCOFTAC, (2000).

[17] F. Durst, Grundlagen der Strömungsmechanik, vol. 1. Heidelberg: Springer, (2006).