Superordinate Control Structure for Hybrid Compensation Systems


Article Preview

Medium voltage grids are subject to a change in load situation due to the installation of decentralized generation plants. Predominantly load symmetry, active and reactive power as well as the required capacity of earth fault compensation is affected. Inverter-based plants as well as consumers using switching power supplies or phase control cause distortions of frequency. Simultaneously electrical energy storage is gaining importance within rural distribution networks to compensate fluctuating generation plants. A hybrid compensation system includes a transformer, a multi-phase inverter, diverse storage systems and a communication-capable control unit, which may be connected to the control center of the distribution system operator (DSO). It is object to current research activities to design and evaluate the functions of the superordinate control unit, which has to parametrize individual components, coordinate the energy flows between them and to embed several measuring instruments. Within the present work, basic considerations for design of system control are outlined.



Edited by:

Jörg Franke and Markus Michl




R. Böhm et al., "Superordinate Control Structure for Hybrid Compensation Systems", Advanced Engineering Forum, Vol. 19, pp. 65-73, 2016

Online since:

October 2016




* - Corresponding Author

[1] T. Bakon, Einsatz von Stromrichtern in der Energieversorgung zur Netzstützung und Fehlerstromlöschung, PhD thesis, Ruhr-Universität Bochum, Fakultät für Elektrotechnik und Informationstechnik, (2008).

[2] G. Hosemann, Elektrische Energietechnik, Springer-Verlag, Heidelberg, (2000).

[3] C. Sankaran, Power Quality, CRC Press LLC, Boca Raton, (2002).

[4] R. Gustavsson, S. Hussain, and A. Saleem, Ancillary Services for Smart Grids - Power Quality Markets, Industrial Information and Control Systems (ICS), Stockholm, (2013).


[5] T. Ise, Y. Hayashi and K. Tsuji, Definitions of power quality levels and the simplest approach for unbundled power quality services, ´Harmonics and Quality of Power, 2000. Proceedings. Ninth International Conference on, Orlando, FL, 2000, pp.385-390.


[6] Gangl, H., Kann man Spannungsqualität kaufen?, e&i Elektrotechnik und Informationstechnik, Volume 118, Issue 9 , pp.441-444, 200l.


[7] M. Berger, G. Brauner, Zukünftige Tendenzen der Spannungsqualität in elektrischen Verteilnetzen, e&i Elektrotechnik und Informationstechnik, Volume 123, Issue 1-2 , pp.28-33, (2006).


[8] VDN-TransmissionCode 2007, Netz- und Systemregeln der deutschen Übertragungsnetzbetreiber, Berlin, (2007).

[9] M. Braun, Provision of Ancillary Services by Distributed Generation, Kassel University Press, Kassel, (2009).

[10] H. J. Kühn, J. M. Salzmann, T. Mayer et al., Technische Richtlinie: Erzeugungsanlagen am Mittelspannungsnetz, Technischer Bericht, Bundesverband der Energie und Wasserwirtschaft BDEW, (2008).

[11] T. Keil, Schutzsysteme für elektrische Energieversorgungsnetze mit dezentralen Stromerzeugungsanlagen, Shaker Verlag, Aachen, (2009).

[12] I. N. Bronstein, K. A. Semendjajew, G. Musiol, H. Mühlig, Taschenbuch der Mathematik, Verlag Harri Deutsch, Thun und Frankfurt am Main, (2001).

[13] J. Häfner, On the Reduction of Harmonics in Power Systems – A New Hybrid Power Filter Approach, Fachbereich 12 - Elektrotechnik – der Technischen Universität Berlin, Diss., (1999).

[14] D. Sabin, D. Brooks, and A. Sundaram, Indices for Assessing Harmonic Distortion from Power Quality Measurements: Definitions and Benchmark Data, IEE Transactions on Power Delivery, Vol. 14, No. 2, (1999).


[15] H. Barth, D. Hidalgo, A. Pohlemann, M. Braun, L. H. Hansen and H. Knudsen, Technical and economical assessment of reactive power provision from distributed generators: Case study area of East Denmark, PowerTech (POWERTECH), 2013 IEEE Grenoble, Grenoble, 2013, pp.1-6.


[16] M. Scherer, W. Sattinger: Test zur Schwarzstart- und Inselbetriebsfähigkeit, swissgrid AG, Frick, (2010).

[17] F. Prillwitz, M. Krüger: Netzwiederaufbau nach Großstörungen, Universität Rostock, Institut für Elektrische Energietechnik; Rostock, (2007).

[18] L. Asiminoaei, F. Blaabjerg and S. Hansen, Evaluation of harmonic detection methods for active power filter applications, Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005., 2005, pp.635-641 Vol. 1.


[19] H. Henao, T. Assaf and G. A. Capolino, The discrete Fourier transform for computation of symmetrical components harmonics, Power Tech Conference Proceedings, 2003 IEEE Bologna, 2003, p.6 pp. Vol. 4.


[20] S. Srianthumrong and S. Sangwongwanich, An active power filter with harmonic detection method based on recursive DFT, Harmonics and Quality of Power Proceedings, 1998. Proceedings. 8th International Conference On, Athens, 1998, pp.127-132 vol. 1.


[21] R. Hartley and K. Welles, Recursive computation of the Fourier transform, Circuits and Systems, 1990., IEEE International Symposium on, New Orleans, LA, 1990, pp.1792-1795 vol. 3.


[22] J. Sierig, Photovoltaik und Energiespeicher in elektrischen Energieversorgungssystemen, Verlag der Augustinus Buchhandlung, Aachen, (1993).

[23] J.I. San Martín, I. Zamora, J.J. San Martín, V. Aperribay, and P. Eguía Energy Storage Technologies for Electric Applications", International Conference on Renewable Energies and Power Quality (ICREPQ, 11), Las Palmas de Gran Canaria, (2011).