
Fast Volume Rendering Using a Spherical Index Method for Shading

Yu Wang1, a, Hong Wang2,b and Lu Huang3
1Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang

110819, PRC

2 Northeastern University, POB 319, 110004 Shenyang, China

3School of Information Engineering, Dalian Ocean University, Dalian 116023, PRC

aw_y@neusoft.com, bhongwang@mail.neu.edu.cn

Keywords: Volume rendering, shading model, surface normal

Abstract. Volume rendering can be used to exhibit the shape and volumetric properties of 3-D

objects. However, it requires a considerable amount of time to process the large volume of data. In

this article we present a speed-up method by pre-computing some data of the shading model. We

index voxel surface normal by θ and φ in spherical coordinate system. Each voxel surface normal is

pre-computed and stored in array of values [φθ ,]. Some values of the shading model related to voxel

surface normal and light vector are also stored. Each rendering we only need updating these values

for shading calculation. We found that our speed-up method can reduce about one fourth of

computing time but need less additional memory to store surface normal using this spherical index

method.

Introduction

Volume rendering [1] is a flexible technique for visualizing scalar fields with widespread

applicability in medical imaging and scientific visualization. It can be used to analyze the shape and

volumetric property of three-dimensional objects for medical imaging and computational fluid

dynamics. It can display semi-opaque objects and provide better visualization of the surface of an

object. Volume rendering is a popular technique for medical imaging used to understand objects by

analyzing the large amount of empirical data obtained from measurements or simulations [2].

However, most volume rendering methods that produce effective visualizations are computation

intensive [3]. It is very difficult for them to achieve interactive rendering rates for the large amount of

volume data. One way to solve the above problems is to parallelize the serial volume rendering

techniques onto hardware, for example, distributed memory multicomputers [4]. But hardware

speed-up method will make a higher cost and make the system more complicated. Hardware speed-up

method will also reduce the expansibility of the system. So software/algorithms speed-up techniques

are always required in this field.

Research work of the speed-up techniques based on ray casting has been being done since it was

put forward. According to a generally accepted criterion, a “good” ray-shooting algorithm runs in

sub-linear time after subquadratic preprocessing and uses linear memory space. Thus instead of

implementing the algorithms invented in computational geometry, computer graphics practitioners

prefer heuristic ray-shooting speed-up techniques, including, for example,

_ bounding box [5],

_ uniform space subdivision,

_ octree [6,7],

_ BSP or kd-tree [8],

_ ray coherence methods [9,10],

_ ray classification [6,7],

_ Voronoi diagram based space partitioning [11].

Advanced Engineering Forum Online: 2011-12-22
ISSN: 2234-991X, Vols. 2-3, pp 567-572
doi:10.4028/www.scientific.net/AEF.2-3.567
© 2012 The Author(s). Published by Trans Tech Publications Ltd, Switzerland.

This article is an open access article under the terms and conditions of the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0)

https://doi.org/10.4028/www.scientific.net/AEF.2-3.567

These algorithms try to minimize ray-object intersection calculations by building a space

partitioning data structure, which has two purposes. On the one hand, this data structure can select

only those objects that are in the direction of the ray and can ignore those that are not in this direction

and thus can have no intersection with it. From another point of view, it means that the space partition

selected for a given ray encapsulates the points of object locations that can be intersected, but is

usually larger than that.

The other main feature of these algorithms is that they sort the objects along the ray. It means

that candidate objects that are in the ray direction are reported in such an order that if we find an

intersection, then we can stop the calculations, because all other intersections are surely behind the

found one.

Even if we use these method mentioned above, it is not fast enough to achieve interactive

rendering rates on a PC, even on a workstation. In this paper we proposed a spherical index method by

pre-computing much of the shading model required data, which can reduce computing time based on

the algorithms mentioned above.

Pre-integrated volume rendering [MHC90, EKE01] is a commonly used technique for

improving the quality of volume renderings. Because much of the necessary computation is done in

advance, this method can generate high quality images with better performance than heavily super

sampling the volume. Unfortunately, the pre-integrated lookup table can take a long time to compute

and can not incorporate lighting due to space constraints.

The pre-calculated integral in the lookup table is based only on pairs of scalar values, not

normals. Integrating three-component normals into the pre-integrated lookup table requires four

values each for the front and back samples(scalar, Nx, Ny, Nz) giving an eight-dimensional lookup

table, far too large for a practical implementation.

Using the method proposed in this paper, to store the normals, the additional memory is only the

same size of the volume data. So it is possible to integrated normals into the pre-integrated lookup

table.

Rendering Pipeline

The pipeline of volume rending used in this paper is summarized in Fig. 1. We begin with an array of

acquired values),,(0 kji zyxf at voxel location

[kji zyx ,,]. In order to render some

information we want from the volume data,

some data preparation may be done, including

correction for nonorthogonal sampling grids in

electron density maps, correction for patient

motion in CT data, contrast enhancement,

interpolation of additional samples, etc..

The output of the data preparation is an

array of prepared values),,(1 kji zyxf . This

array is used as input to the shading model. We

also prepare another two array. One is voxel

colors)(1fcλ , bgr ,,=λ , the other is voxel

opacities)(1fα . The array of prepared values is

used as input to one of the classification

Fig. 1. Pipeline Overview procedures, yielding an array of voxel opacities

)(1fα . In order to reduce shading time we also

need preparing the array of voxel normal),,(kji zyxθ and),,(kji zyxφ .

568 Mechatronics and Information Technology

Rays are then cast into these two arrays

from the observer eye point. For each ray value

1f of sample voxel at location [kji zyx ,,] is

computed by trilinearly interpolating from

values 1f in the eight voxels closest to the

sample voxel, as shown in Fig. 2. Then voxel

colors),,(kji zyxcλ is acquired by looking up

array table of prepared values)(1kfcλ , voxel

opacities),,(kji zyxα is acquired by looking

up array table of prepared values)(1kfα .

Finally, a full opaque background of color

Fig. 2. Ray tracing/Resembling steps λ,bkgc is draped behind the dataset and the

resample colors and opacities are merged with each other and with the background by compositing in

back-to- front order to yield a single color),(vucλ for the ray, and since only one ray is cast per

image pixel, for the pixel location [nm vu ,] as well.

The compositing calculations referred to above are simply linear interpolations. Specifically, the

color),(, vuoutc λ of the ray as it leaves each sample location is related to the color),(, vuinc λ of the

ray as it enters and the color),,(kji zyxcλ and opacity),,(kji zyxα at that sample location by the

transparency formula

),,(),,()),,(1)(,(),(,, kjikjikjiinout zyxzyxczyxvuvu cc αα λλλ +−= (1)

Solving for pixel color),(, vuoutc λ in terms of the vector of sample colors),,(kji zyxcλ and

opacity),,(kji zyxα along the associated viewing ray is given by Eq. 2

∑ ∏
= +=









−=

L

l

L

lin

kjiinkjikjinm zyxzyxzyxcvuc
0 1

)),,(1(),,(),,(),(ααλλ (2)

where λλ ,,0),,(bkgkji czyxc = and 1),,(0 =kji zyxα .

Shading and Classification

The mapping from acquired data to color provides 3D shape cues but dose not participate in the

classification operation using the rendering pipeline presented above. In order to provide a

satisfactory illusion of smooth surfaces, a shading model must be selected. The model chosen was

developed by Phong: [12]

()
()() ()()[]nLsLd

L

p

pL HsNkLsNk
sdkk

c
kcsc •+•

+
+= λλ

λ
αλλλ

21

)((3)

where,)(Lscλ : 'λ th component of color at voxel location Ls [kji zyx ,,], bgr ,,=λ ;

λpc : 'λ th component of color of parallel light source;

αλk : Ambient reflection coefficient for 'λ th color component;

λdk : diffuse reflection coefficient for 'λ th color component;

λsk : Specular reflection coefficient for 'λ th color component;

n : Exponent used to approximate highlight;

Advanced Engineering Forum Vols. 2-3 569

21, kk : Constants used in linear approximation of depth-cueing;

()Lsd : Perpendicular distance from picture plane to voxel location Ls [kji zyx ,,];

()LsN : Surface normal at voxel location Ls [kji zyx ,,];

L : Normalized vector in direction of light source;

H : Normalized vector in direction of maximum highlight.

The mapping from prepared values 1f to

opacity α and color λc performs the essential

task of classification. It is not the main point of

this paper. So the mapping arrays)(1kfcλ and

)(1kfα are simply defined by user, as shown in

Fig. 3.

Fig. 3. Mapping arrays definition

Speeding-up Method

In Eq. 3 presented on section shading and classification, the surface normal at voxel location

Ls [kji zyx ,,] is given by Eq. 4

),,(

),,(
),,()(

kji

kji

kjiL
zyxf

zyxf
zyxNsN

∇

∇
== (4)

where the gradient vector),,(kji zyxf∇ is approximated using the operator

=∇),,(kji zyxf),,,(),,(),,,(),,([11111 kjikjikjikji zyxfzyxfzyxfzyxf −+−−+ −−

)],,(),,(11 kjikji zyxfzyxf −+ − (5)

Since an array of values),,(1 kji zyxf is prepared,

we can pre-compute the voxel surface normals ()LN s at

location Ls [kji zyx ,,]. Here ()LsN is indexed by θ and

φ , which are are defined in Fig. 4. We store voxel surface

normals in an array of voxel normal (, ,)
i j k
x y zθ

and),,(kji zyxφ . Since a parallel light is used, L is a

constant during rendering each time. Furthermore.

Fig. 4. θ and φ definition

LV

LV
H

+
+

= (6)

where, V : normalized vector in direction of observer. Since an orthographic projection is used, V

and H are also constants.

Considering voxel surface normals ()LsN of the volume data are constants, which are

computed from prepared values),,(1 kji zyxf , () LsN L • and () HsN L • in Eq. 3 are also constants.

So we can pre-compute the values of () LsN L • and. The values of () LsN L • is stored in an array

570 Mechatronics and Information Technology

of),(JINL φθ . The values of () HsN L • is stored in an array of),(JINH φθ . So we only need

updating array of),(JINL φθ and array of),(JINH φθ instead of recomputing the values of

() LsN L • and ()()nL HsN • at each sampling voxel each time rendering.

Results and discussion

Five patient CT series image data were selected to make a test. The patient volume data info and the

result are shown in table 1. The timings were measured on a PC with Intel(R) Core(TM)2 Duo CPU

E8400 @ 3.00Hz. From the result we found it can reduce about one fourth of computing time with

this method.

Table 1 Result and data info

Considering the patient volume data type is short, which is 16 bit in C++ language, if integer

maxI and maxJ of the discrete Iθ and Jφ are both less than 255, it needs only a short type array with

the same size of the volume data to store voxel normals),,(kji zyxθ and),,(kji zyxφ . The first

eight bits of a short type value is used to store value of Iθ and the second eight bits is used to store

value of Jφ . Less additional memory is needed to store surface normal using this kind of spherical

index method since three times memory of the volume data is need to store voxel normal with

three-component (Vx, Vy, Vz)..

Acknowledgments

The authors would like to thank WangHao for providing CT data used for this research. This work

was supported by the National Natural Science Foundation of China under Grant No. 61071057.

References

[1] A. Kaufman (eds.). Volume visualization. IEEE Computer Society Press, 1991.

[2] T. S. Yoo, U. Neumann, H. Fuchs, S. M. Pizer, T. Cullip, J. Rhoades, and R. Whitaker. Direct

visualization of volume data. IEEE Computer Graphics & Applications, 12:63–71, 1992.

[3] J. P. Singh, A. Gupta, and M. Levoy. Parallel visualization algorithms: Performance and

architectural implications. Computer, 27:45–55, 1994.

[4] C. M. Wittenbrink and A. K. Somani. Permutation warping for data parallel volume rendering.

InProceedings of the 1993 Parallel Rendering Symposium, pp. 57–60. San Jose, October 1993.

[5] Hu Ying, Hou Yue，Xu Xin-he. Fast Volume Rendering for Medical Image[C], Proceedings of

XI International Congress for Stereology, Beijin, Nov 2003.

[6] A. S. Glassner. Space subdivision for fast ray tracing. IEEE Computer Graphics and pplications,

4(10):15–22, 1984.

[7] J. Arvo and D. Kirk. A survey of ray tracing acceleration techniques. In Andrew S. Glassner,

ditor, An Introduction to Ray Tracing, pages 201–262. Academic Press, London,1989.

[8] V. Havran. Heuristic Ray Shooting Algorithms. Czech Technical University, Ph.D. dissertation,

2001.

[9] M. Ohta and M. Maekawa. Ray coherence theorem and constant time ray tracing algorithm. In T.

L. Kunii, editor, Computer Graphics 1987. Proc. CG International ’87, pages 303–314, 1987.

Advanced Engineering Forum Vols. 2-3 571

[10] T. Horv´ath, P. M´arton, G. Risztics, and L. Szirmay-Kalos. Ray coherence between sphere and a

convex polyhedron. Computer Graphics Forum, 2(2):163–172, 1992.

[11] G. M´arton. Acceleration of ray tracing via voronoidiagrams. In Alan W. Paeth, editor, Graphics

Gems V, pages 268–284. Academic Press, Boston, 1995.

[12] P.Bui-Tuong. Illumination for Computer-Generated Pictures. CACM, June 1975, pages 311-317.

572 Mechatronics and Information Technology

