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Abstract. Volume rendering can be used to exhibit the shape and volumetric properties of 3-D 

objects. However, it requires a considerable amount of time to process the large volume of data. In 

this article we present a speed-up method by pre-computing some data of the shading model. We 

index voxel surface normal by θ  and φ  in spherical coordinate system. Each voxel surface normal is 

pre-computed and stored in array of values [ φθ , ]. Some values of the shading model related to voxel 

surface normal and light vector are also stored. Each rendering we only need updating these values 

for shading calculation. We found that our speed-up method can reduce about one fourth of 

computing time but need less additional memory to store surface normal using this spherical index 

method. 

Introduction 

Volume rendering [1] is a flexible technique for visualizing scalar fields with widespread 

applicability in medical imaging and scientific visualization. It can be used to analyze the shape and 

volumetric property of three-dimensional objects for medical imaging and computational fluid 

dynamics. It can display semi-opaque objects and provide better visualization of the surface of an 

object. Volume rendering is a popular technique for medical imaging used to understand objects by 

analyzing the large amount of empirical data obtained from measurements or simulations [2]. 

However, most volume rendering methods that produce effective visualizations are computation 

intensive [3]. It is very difficult for them to achieve interactive rendering rates for the large amount of 

volume data. One way to solve the above problems is to parallelize the serial volume rendering 

techniques onto hardware, for example, distributed memory multicomputers [4]. But hardware 

speed-up method will make a higher cost and make the system more complicated. Hardware speed-up 

method will also reduce the expansibility of the system. So software/algorithms speed-up techniques 

are always required in this field. 

Research work of the speed-up techniques based on ray casting has been being done since it was 

put forward. According to a generally accepted criterion, a “good” ray-shooting algorithm runs in 

sub-linear time after subquadratic preprocessing and uses linear memory space. Thus instead of 

implementing the algorithms invented in computational geometry, computer graphics practitioners 

prefer heuristic ray-shooting speed-up techniques, including, for example, 

_ bounding box [5], 

_ uniform space subdivision, 

_ octree [6,7], 

_ BSP or kd-tree [8], 

_ ray coherence methods [9,10], 

_ ray classification [6,7], 

_ Voronoi diagram based space partitioning [11]. 
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These algorithms try to minimize ray-object intersection calculations by building a space 

partitioning data structure, which has two purposes. On the one hand, this data structure can select 

only those objects that are in the direction of the ray and can ignore those that are not in this direction 

and thus can have no intersection with it. From another point of view, it means that the space partition 

selected for a given ray encapsulates the points of object locations that can be intersected, but is 

usually larger than that. 

The other main feature of these algorithms is that they sort the objects along the ray. It means 

that candidate objects that are in the ray direction are reported in such an order that if we find an 

intersection, then we can stop the calculations, because all other intersections are surely behind the 

found one.  

Even if we use these method mentioned above, it is not fast enough to achieve interactive 

rendering rates on a PC, even on a workstation. In this paper we proposed a spherical index method by 

pre-computing much of the shading model required data, which can reduce computing time based on 

the algorithms mentioned above.   

Pre-integrated volume rendering [MHC90, EKE01] is a commonly used technique for 

improving the quality of volume renderings. Because much of the necessary computation is done in 

advance, this method can generate high quality images with better performance than heavily super 

sampling the volume. Unfortunately, the pre-integrated lookup table can take a long time to compute 

and can not incorporate lighting due to space constraints. 

The pre-calculated integral in the lookup table is based only on pairs of scalar values, not 

normals. Integrating three-component normals into the pre-integrated lookup table requires four 

values each for the front and back samples(scalar, Nx, Ny, Nz) giving an eight-dimensional lookup 

table, far too large for a practical implementation. 

Using the method proposed in this paper, to store the normals, the additional memory is only the 

same size of the volume data. So it is possible to integrated normals into the pre-integrated lookup 

table. 

Rendering Pipeline 

The pipeline of volume rending used in this paper is summarized in Fig. 1. We begin with an array of 

acquired values ),,(0 kji zyxf  at voxel location 

[ kji zyx ,, ]. In order to render some 

information we want from the volume data, 

some data preparation may be done, including 

correction for nonorthogonal sampling grids in 

electron density maps, correction for patient 

motion in CT data, contrast enhancement, 

interpolation of additional samples, etc..    

 

The output of the data preparation is an 

array of prepared values ),,(1 kji zyxf . This 

array is used as input to the shading model. We 

also prepare another two array. One is voxel 

colors )( 1fcλ , bgr ,,=λ , the other is voxel 

opacities )( 1fα . The array of prepared values is 

used as input to one of the classification  

Fig. 1. Pipeline Overview                    procedures, yielding an array of voxel opacities 

)( 1fα  . In order to reduce shading time we also 

need preparing the array of  voxel normal ),,( kji zyxθ  and ),,( kji zyxφ . 
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Rays are then cast into these two arrays 

from the observer eye point.  For each ray value 

1f  of sample voxel at location [ kji zyx ,, ] is 

computed   by   trilinearly   interpolating   from 

values  1f   in the eight voxels closest to the 

sample voxel, as shown in Fig. 2. Then voxel 

colors ),,( kji zyxcλ  is acquired by looking up 

array table of prepared values )( 1kfcλ , voxel 

opacities ),,( kji zyxα  is acquired by looking 

up  array  table  of  prepared  values  )( 1kfα  .  

Finally, a full opaque background of color  

Fig. 2. Ray tracing/Resembling steps             λ,bkgc  is draped behind the dataset and the 

resample colors and opacities are merged with each other and with the background by compositing in 

back-to- front order to yield a single color ),( vucλ  for the ray, and since only one  ray  is  cast  per  

image  pixel,  for  the  pixel location [ nm vu , ] as well.  

The compositing calculations referred to above are simply linear interpolations. Specifically, the 

color ),(, vuoutc λ  of the ray as it leaves each sample location is related to the color ),(, vuinc λ  of the 

ray as it enters and the color ),,( kji zyxcλ  and opacity ),,( kji zyxα  at that sample location by the 

transparency formula  

),,(),,()),,(1)(,(),( ,, kjikjikjiinout zyxzyxczyxvuvu cc αα λλλ +−=                                   (1) 

Solving for pixel color ),(, vuoutc λ in terms of the vector of sample colors ),,( kji zyxcλ  and 

opacity ),,( kji zyxα  along the associated viewing ray is given by Eq. 2 
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where λλ ,,0 ),,( bkgkji czyxc =  and 1),,(0 =kji zyxα . 

Shading and Classification 

The mapping from acquired data to color provides 3D shape cues but dose not participate in the 

classification operation using the rendering pipeline presented above. In order to provide a 

satisfactory illusion of smooth surfaces, a shading model must be selected. The model chosen was 

developed by Phong: [12]  
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where,  )( Lscλ  : 'λ th component of color at voxel location Ls  [ kji zyx ,, ], bgr ,,=λ ; 

λpc : 'λ th component of color of parallel light source; 

αλk :  Ambient reflection coefficient for 'λ th color component; 

λdk :  diffuse reflection coefficient for 'λ th color component; 

λsk :  Specular reflection coefficient for 'λ th color component; 

n :  Exponent used to approximate highlight; 
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21, kk :  Constants used in linear approximation of depth-cueing; 

( )Lsd :  Perpendicular distance from picture plane to voxel location Ls [ kji zyx ,, ];  

( )LsN :  Surface normal at voxel location Ls [ kji zyx ,, ];  

L :  Normalized vector in direction of light source;  

H :  Normalized vector in direction of maximum highlight. 

 

The mapping from prepared values 1f  to 

opacity α  and color λc  performs the essential 

task of classification. It is not the main point of 

this paper. So the mapping arrays  )( 1kfcλ  and 

)( 1kfα  are simply defined by user, as shown in 

Fig. 3. 

 

 

Fig. 3. Mapping arrays definition 

Speeding-up Method 

In Eq. 3 presented on section shading and classification, the surface normal at voxel location 

Ls [ kji zyx ,, ] is given by Eq. 4 
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where the gradient vector ),,( kji zyxf∇   is approximated using the operator  

=∇ ),,( kji zyxf ),,,(),,(),,,(),,([ 11111 kjikjikjikji zyxfzyxfzyxfzyxf −+−−+ −−  

                            )],,(),,( 11 kjikji zyxfzyxf −+ −                                                                       (5) 

Since an array of values ),,(1 kji zyxf  is prepared, 

we can pre-compute the voxel surface normals ( )LN s  at 

location Ls [ kji zyx ,, ]. Here ( )LsN  is indexed by θ  and 

φ , which are are defined in Fig. 4. We store voxel surface 

normals in an array of voxel normal ( , , )
i j k
x y zθ  

and ),,( kji zyxφ .  Since a parallel light is used, L  is a 

constant during rendering each time. Furthermore. 

 

Fig. 4. θ  and φ  definition 

LV
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H

+
+

=                                                                                                                                       (6) 

where, V :  normalized vector in direction of observer. Since an orthographic projection is used, V  

and H  are also constants.  

Considering voxel surface normals ( )LsN  of the volume data are constants, which are 

computed from prepared values ),,(1 kji zyxf , ( ) LsN L •  and ( ) HsN L • in Eq. 3 are also constants. 

So we can pre-compute the values of ( ) LsN L •  and. The values of ( ) LsN L •  is stored in an array 
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of ),( JINL φθ . The values of ( ) HsN L •  is stored in an array of ),( JINH φθ . So we only need 

updating array of ),( JINL φθ  and array of ),( JINH φθ  instead of recomputing the values of 

( ) LsN L • and  ( )( )nL HsN •  at each sampling voxel each time rendering. 

Results and discussion  

Five patient CT series image data were selected to make a test. The patient volume data info and the 

result are shown in table 1. The timings were measured on a PC with Intel(R) Core(TM)2 Duo CPU 

E8400 @ 3.00Hz. From the result we found it can reduce about one fourth of computing time with 

this method.  

Table 1  Result and data info 

 

Considering the patient volume data type is short, which is 16 bit in C++ language, if integer 

maxI  and maxJ  of the discrete Iθ  and Jφ  are both less than 255, it needs only a short type array with 

the same size of the volume data to store voxel normals ),,( kji zyxθ  and ),,( kji zyxφ . The first 

eight bits of a short type value is used to store value of Iθ  and the second eight bits is used to store 

value of Jφ . Less additional memory is needed to store surface normal using this kind of spherical 

index method since three times memory of the volume data is need to store voxel normal with 

three-component (Vx, Vy, Vz).. 
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