Advanced Engineering Forum Online: 2011-12-22
ISSN: 2234-991X, Vols. 2-3, pp 567-572

doi:10.4028/www.scientific.net/AEF.2-3.567

© 2012 The Author(s). Published by Trans Tech Publications Ltd, Switzerland.

Fast Volume Rendering Using a Spherical Index Method for Shading
Yu Wang" 2, Hong Wang?® and Lu Huang®

'Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang
110819, PRC

2 Northeastern University, POB 319, 110004 Shenyang, China
*School of Information Engineering, Dalian Ocean University, Dalian 116023, PRC

w_y@neusoft.com, "hongwang@mail.neu.edu.cn

Keywords: Volume rendering, shading model, surface normal

Abstract. Volume rendering can be used to exhibit the shape and volumetric properties of 3-D
objects. However, it requires a considerable amount of time to process the large volume of data. In
this article we present a speed-up method by pre-computing some data of the shading model. We
index voxel surface normal by € and ¢ in spherical coordinate system. Each voxel surface normal is
pre-computed and stored in array of values [8, ¢]. Some values of the shading model related to voxel
surface normal and light vector are also stored. Each rendering we only need updating these values
for shading calculation. We found that our speed-up method can reduce about one fourth of
computing time but need less additional memory to store surface normal using this spherical index
method.

Introduction

Volume rendering [1] is a flexible technique for visualizing scalar fields with widespread
applicability in medical imaging and scientific visualization. It can be used to analyze the shape and
volumetric property of three-dimensional objects for medical imaging and computational fluid
dynamics. It can display semi-opaque objects and provide better visualization of the surface of an
object. Volume rendering is a popular technique for medical imaging used to understand objects by
analyzing the large amount of empirical data obtained from measurements or simulations [2].

However, most volume rendering methods that produce effective visualizations are computation
intensive [3]. It is very difficult for them to achieve interactive rendering rates for the large amount of
volume data. One way to solve the above problems is to parallelize the serial volume rendering
techniques onto hardware, for example, distributed memory multicomputers [4]. But hardware
speed-up method will make a higher cost and make the system more complicated. Hardware speed-up
method will also reduce the expansibility of the system. So software/algorithms speed-up techniques
are always required in this field.

Research work of the speed-up techniques based on ray casting has been being done since it was
put forward. According to a generally accepted criterion, a “good” ray-shooting algorithm runs in
sub-linear time after subquadratic preprocessing and uses linear memory space. Thus instead of
implementing the algorithms invented in computational geometry, computer graphics practitioners
prefer heuristic ray-shooting speed-up techniques, including, for example,

_ bounding box [5],

_ uniform space subdivision,

_octree [6,7],

_ BSP or kd-tree [8],

_ ray coherence methods [9,10],

_ray classification [6,7],

_ Voronoi diagram based space partitioning [11].

This article is an open access article under the terms and conditions of the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0)

https://doi.org/10.4028/www.scientific.net/AEF.2-3.567

568 Mechatronics and Information Technology

These algorithms try to minimize ray-object intersection calculations by building a space
partitioning data structure, which has two purposes. On the one hand, this data structure can select
only those objects that are in the direction of the ray and can ignore those that are not in this direction
and thus can have no intersection with it. From another point of view, it means that the space partition
selected for a given ray encapsulates the points of object locations that can be intersected, but is
usually larger than that.

The other main feature of these algorithms is that they sort the objects along the ray. It means
that candidate objects that are in the ray direction are reported in such an order that if we find an
intersection, then we can stop the calculations, because all other intersections are surely behind the
found one.

Even if we use these method mentioned above, it is not fast enough to achieve interactive
rendering rates on a PC, even on a workstation. In this paper we proposed a spherical index method by
pre-computing much of the shading model required data, which can reduce computing time based on
the algorithms mentioned above.

Pre-integrated volume rendering [MHC90, EKEO1] is a commonly used technique for
improving the quality of volume renderings. Because much of the necessary computation is done in
advance, this method can generate high quality images with better performance than heavily super
sampling the volume. Unfortunately, the pre-integrated lookup table can take a long time to compute
and can not incorporate lighting due to space constraints.

The pre-calculated integral in the lookup table is based only on pairs of scalar values, not
normals. Integrating three-component normals into the pre-integrated lookup table requires four
values each for the front and back samples(scalar, Nx, Ny, Nz) giving an eight-dimensional lookup
table, far too large for a practical implementation.

Using the method proposed in this paper, to store the normals, the additional memory is only the
same size of the volume data. So it is possible to integrated normals into the pre-integrated lookup
table.

Rendering Pipeline

The pipeline of volume rending used in this paper is summarized in Fig. 1. We begin with an array of
acquired values f(x,,;,2,) atvoxel location

ired val
G [.Y,z]. In order to render some
v information we want from the volume data,

prepare data
% some data preparation may be done, including
prepare data correction for nonorthogonal sampling grids in

G CUR) . . .

— ¢ electron density maps, correction for patient

prepare data

ﬁ(xu}’jszk) -, =)"_,=Zk)

update data

shading ¢

voxel colors
CilAilxy.2)]

ray tracing/re-sampling

sample colors
Cilfilx.y.2)]

NI|$,6), NH($.8)

classification y

voxel opacities
cl filx.y.2)]

ray tracing!re-sampling¢

compositing
__ image pixel
o €, (14,v)

sample opacities
L fiGxoy.2)]

Fig. 1. Pipeline Overview

motion in CT data, contrast enhancement,
interpolation of additional samples, etc..

The output of the data preparation is an
array of prepared values f,(x;,,,2;) . This
array is used as input to the shading model. We
also prepare another two array. One is voxel
colorsc,(f;),A=r,g,b, the other is voxel

opacities (f,) . The array of prepared values is

used as input to one of the classification
procedures, yielding an array of voxel opacities
a(f,) . In order to reduce shading time we also

need preparing the array of voxel normal &(x,,y;,z,) and ¢(x;,y;,z;).

Advanced Engineering Forum Vols. 2-3 569

Rays are then cast into these two arrays

from the observer eye point. For each ray value
eyepoint . .
« Jf, of sample voxel at location [x;,y;,z,] is
image pixel “_viewing ray computed b}/ tr111n§arly interpolating from
values f; in the eight voxels closest to the
tri-linear interpolation . .

) sample voxel, as shown in Fig. 2. Then voxel
: \1 colors ¢,(x;,;,2;) is acquired by looking up
voxel with color and opacity T array table of prepared values ¢, (f,), voxel
CatA)-alh) -’ opacities c(x;,y;,2;) is acquired by looking
voxel with fi (%7 ;. 7;) up array table of prepared values a(f),) .

Finally, a full opaque background of color

Fig. 2. Ray tracing/Resembling steps Cpig. 18 draped behind the dataset and the

resample colors and opacities are merged with each other and with the background by compositing in
back-to- front order to yield a single color C, (u,v) for the ray, and since only one ray is cast per

image pixel, for the pixel location [u,,,V,] as well.

The compositing calculations referred to above are simply linear interpolations. Specifically, the
color C,,, ,(u,v) of the ray as it leaves each sample location is related to the color C,, , (u,v) of the

ray as it enters and the color ¢, (x;,y;,z,) and opacity @(x;,y;,z,) at that sample location by the
transparency formula

Cour 2 (UsV) =C;, , (u,v)(1 _a(xisyjazk)+ C,l(xisyjszk)a(xisyjazk) (1)

Solving for pixel color C,,, ,(u,v)in terms of the vector of sample colors ¢, (x;,¥;,2;) and

opacity a(x;, Vi z,) along the associated viewing ray is given by Eq. 2

Cl(um’vn) = Z|:cl(‘xi3ijZk)a(xiﬂyj’Zk)H(l_ain(xiﬂyjﬂzk))i| (2)
1=0

in=I+1

where ¢ (xl.,yj,zk) = Cpe ad (xl.,yj,zk) =1.

Shading and Classification

The mapping from acquired data to color provides 3D shape cues but dose not participate in the
classification operation using the rendering pipeline presented above. In order to provide a
satisfactory illusion of smooth surfaces, a shading model must be selected. The model chosen was
developed by Phong: [12]

C,(s;)= Cp/lka/l % ()[kd/l (N(SL). L)"’ k., (N(SL). H)n] (3)

N A
k,+k,d(s,
where, C,(s,) : A'th component of color at voxel location s, [x;,y,,2,], A =r,g,b;
C,;: A'th component of color of parallel light source;
k,, . Ambient reflection coefficient for A'th color component;

k,, . diffuse reflection coefficient for A'th color component;

k., : Specular reflection coefficient for A'th color component;
n : Exponent used to approximate highlight;

570 Mechatronics and Information Technology

k,,k,: Constants used in linear approximation of depth-cueing;

d (s L): Perpendicular distance from picture plane to voxel location s, [x,, v,z];

N (S L) : Surface normal at voxel location s, [x,,y;,2,];

L : Normalized vector in direction of light source;
H : Normalized vector in direction of maximum highlight.

¢ (Lc The mapping from prepared values f, to

1§ ¢ opacity @ and color €, performs the essential
task of classification. It is not the main point of
this paper. So the mapping arrays c,(f;,) and

a(f,;) are simply defined by user, as shown in
Fig. 3.

A fu Fome
Fig. 3. Mapping arrays definition

Speeding-up Method

In Eq. 3 presented on section shading and classification, the surface normal at voxel location
s, [x,,y;,2,]1s given by Eq. 4

vf(xiay'az)
N(SL)ZN(Xi,yj,Zk)Z L 4)
VI (x.p,020)
where the gradient vector Vf(x;,y,,2;) is approximated using the operator
Vf(xi’yj’zk) = [f(xi+19yjazk)_f(xi—layjazk—l)af(xiayj+lrzk)_f(xi»yj—lazk)a
f(xiayjﬂazk)_f(xiayj—lezk)] (5)

Since an array of values f,(x,,y,,z;) is prepared,
we can pre-compute the voxel surface normals N (S L) at
location s, [x,,y,,z,]. Here N(SL) is indexed by € and
¢, which are are defined in Fig. 4. We store voxel surface
normals in an array of voxel normal 6(x,y,,z,)
and §(x,,y;,2,). Since a parallel light is used, L is a
constant during rendering each time. Furthermore.

Fig. 4. 6 and ¢ definition

_V+L
|+

(6)

where, V' : normalized vector in direction of observer. Since an orthographic projection is used, V
and H are also constants.

Considering voxel surface normals N (S L) of the volume data are constants, which are
computed from prepared values f,(x;,y;,2,), N (S ,)eL and N(s,)e H in Eq. 3 are also constants.

So we can pre-compute the values of N (S .)0 L and. The values of N (S .)0 L is stored in an array

Advanced Engineering Forum Vols. 2-3 571

of NL(6,,¢,). The values of N(SL)OH is stored in an array of NH(6,,¢,). So we only need
updating array of NL(6,,¢,) and array of NH(O,,¢,) instead of recomputing the values of

N (S I)0 L and (N (S L) o)" at each sampling voxel each time rendering.

Results and discussion

Five patient CT series image data were selected to make a test. The patient volume data info and the
result are shown in table 1. The timings were measured on a PC with Intel(R) Core(TM)2 Duo CPU
E8400 @ 3.00Hz. From the result we found it can reduce about one fourth of computing time with
this method.

Table 1 Result and data info

patient IDIVolume Data Computing Time (ms) Computcing Time (ns)
Normal Spherical Index

94396 512x512x56 1422 1032

98256 512xb12x%101 1641 1250

V2462 512x512x%61 1583 1203

V1923 512xb12x56 1422 1063

85915 512xb12x73 1641 1140

Considering the patient volume data type is short, which is 16 bit in C++ language, if integer
I...and J__of the discrete €, and ¢, are both less than 255, it needs only a short type array with

the same size of the volume data to store voxel normals €(x;,;,z,) and @(x;,y,;,z,) . The first

eight bits of a short type value is used to store value of @, and the second eight bits is used to store
value of ¢, . Less additional memory is needed to store surface normal using this kind of spherical

index method since three times memory of the volume data is need to store voxel normal with
three-component (Vx, Vy, Vz)..

Acknowledgments

The authors would like to thank WangHao for providing CT data used for this research. This work
was supported by the National Natural Science Foundation of China under Grant No. 61071057.

References

[1] A.Kaufman (eds.). Volume visualization. IEEE Computer Society Press, 1991.

[2] T. S. Yoo, U. Neumann, H. Fuchs, S. M. Pizer, T. Cullip, J. Rhoades, and R. Whitaker. Direct
visualization of volume data. [IEEE Computer Graphics & Applications, 12:63-71, 1992.

[3] J. P. Singh, A. Gupta, and M. Levoy. Parallel visualization algorithms: Performance and
architectural implications. Computer, 27:45-55, 1994.

[4] C. M. Wittenbrink and A. K. Somani. Permutation warping for data parallel volume rendering.
InProceedings of the 1993 Parallel Rendering Symposium, pp. 57-60. San Jose, October 1993.

[5] Hu Ying, Hou Yue, Xu Xin-he. Fast Volume Rendering for Medical Image[C], Proceedings of
XI International Congress for Stereology, Beijin, Nov 2003.

[6] A.S. Glassner. Space subdivision for fast ray tracing. IEEE Computer Graphics and pplications,
4(10):15-22, 1984.

[7] J. Arvo and D. Kirk. A survey of ray tracing acceleration techniques. In Andrew S. Glassner,
ditor, An Introduction to Ray Tracing, pages 201-262. Academic Press, London,1989.

[8] V. Havran. Heuristic Ray Shooting Algorithms. Czech Technical University, Ph.D. dissertation,
2001.

[9] M. Ohta and M. Maekawa. Ray coherence theorem and constant time ray tracing algorithm. In T.
L. Kunii, editor, Computer Graphics 1987. Proc. CG International ’87, pages 303—-314, 1987.

572 Mechatronics and Information Technology

[10]T. Horv’ath, P. Marton, G. Risztics, and L. Szirmay-Kalos. Ray coherence between sphere and a
convex polyhedron. Computer Graphics Forum, 2(2):163-172, 1992.

[11]G. M arton. Acceleration of ray tracing via voronoidiagrams. In Alan W. Paeth, editor, Graphics
Gems V, pages 268-284. Academic Press, Boston, 1995.

[12]P.Bui-Tuong. [llumination for Computer-Generated Pictures. CACM, June 1975, pages 311-317.

