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Abstract. Although the gyroscopic effect on rotor system has been noticed for decades, it is often 

underestimated and even ignored in the simplified model; moreover the comparing analyses of it on 

dynamics of rotor system with distributed masses are rarely performed. In this paper, a model of 

dual-disk rotor system with 8 degree-of-freedoms is developed to show the gyroscopic effects, 

especially on asymmetric rotor system, in which the polar and transversal moments of inertia of the 

disks are incorporated. The critical speeds and unbalance responses of such a rotor system are 

simulated numerically and compared respectively in 4 different asymmetric cases, including 2 cases 

of position asymmetry and another 2 cases of support stiffness asymmetry. The analysis results 

clearly show that the gyroscopic effect has obvious influence on the critical speeds and unbalance 

responses under different asymmetry conditions.  

Introduction 

Dynamics research and vibration analysis of rotor system commonly used in rotating machine are 

very useful. The lateral transversal vibrations of rotor system are most popular, while rotor lateral 

angular motion is also very important, as it introduces a new phenomenon in the rotor behavior, 

namely the gyroscopic effect [1].  

The gyroscopic effect, as related to rotor dynamics, has been notoiced for decades, starting from 

pioneering works by Smith (1933), Yamamoto (1954), Dimentberg (1961)[2-4], considering various 

ways of unfolding the rotor lateral transversal and angular motion. In 1986, Muijderman[5] 

investigated the interaction between the stabilizing effect of gyroscopic moment and destabilizing 

effect of fluid-induced tangential forces. Descriptions of gyroscopic effects in detail can be found in 

the publications by Vance (1988)[6]. Gyroscopic effect has been incorporated in the dynamic 

analysis of rotor shaft system [7].Although the gyroscopic effect plays a significant role in rotor 

dynamics
 
[8] and has been researched for decades; the impact analysis for gyroscopic effect has been 

rarely performed. Moreover, the gyroscopic effect is often underestimated and even ignored in the 

simplified rotor system model.  

In this paper, a simplified model for a dual-disk rotor system with 8 degree of freedom is developed 

to show the gyroscopic effects, in which the polar and transversal moments of inertia of the disks are 

incorporated. The critical speeds and unbalance responses of such a rotor system are simulated 

numerically and compared respectively in 4 different asymmetric cases, including 2 cases of position 

asymmetry and another 2 cases of support stiffness asymmetry.  

Model of the dual-disk rotor system 

Equations of motion. In order to study the gyroscopic effect, a simplified dual-disc rotor system 

model is developed. The system is illustrated in Fig. 1, and it consists of one flexible shaft, two rigid 

disks and two elastic bearing supports. The axial, flexural and torsional behaviors of rotor system are 

uncoupled, and one disk with 4 degrees of freedom is adequate for the study of the flexural behavior 

[8], so the model for the dual-disk rotor system with 8 degree of freedom is adopted in this paper 

shown in Fig. 1(a). 
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(a)Diagram of a dual-disk rotor system with 8 degree of freedom 
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  (b) Reference frame of the first disk    (c) Reference frame of the second disk 

Fig. 1. Diagram of dual disks rotor system and two reference frames origin in '

1
O , '

2
O  respectively 

The global fixed frame is set as AXYZ, origin in A, one of the support points, Z-axis of which 

coinciding with the rotation axis of the rotor. The reference frame '

1 1 1 1O X Y Z of the first disk, origin 

in '

1
O , the center of the first disk, is the space-fixed frame and parallel with the global fixed frame. 

After rotations (1) 1yφ about 1Y (2) 1xφ about '

1X (3) tθ = Ω about 1z (whereΩ is the rotating speed), 

the body-fixed principal frame of the first disk '

1 1 1 1O x y z is obtained, shown in Fig. 1(b). The reference 

frame of the second disk '

2 2 2 2O x y z can be obtained in the same way, shown in Fig. 1(c).
 

The equations of motion of the rotor are derivable from the potential and kinetic energy functions 

by using Lagrange's equation. The detail derivations are described in the reference [8] and the final 

equations are 

xz xz

yz xz

+Ω +

−Ω

MX JY CX + K X = Q

MY JX +CY + K Y = Q

�� � �

�� � �
                                                                                                      (1) 

where 1 1 2 2{ }X φ φ= T

y yx x , 1 1 2 2{ }Tx xy yφ φ= − −Y  are the generalized displacement 

vectors of the rotor system; 1x , 1y are the transverse displacement components of the first disk 

center; 2 2,x y  are the transverse displacement components of the second disk center; 1yφ , 1xφ , 2yφ , 2xφ  

are the rotating angle displacements of the two disk, respectively. M , J ,C , xzK , yzK  are the mass 

matrix, gyroscopic matrix, damping matrix, and stiffness matrixes in XZ- and YZ-plane, respectively. 

The stiffness matrix can be obtained by inverting the compliance matrix [8]. The matrices ofM , J  

are 
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where, 1 2,m m  are the masses of the two disks; 1tJ , 2tJ  are the transverse moments of inertia of the 

two disks about any axis in its own rotation plane; 1 2,p pJ J  are the polar moments of inertia of the two 

disks about the rotation axis.  

The external force vectors
xz
Q ,

yz
Q  along X- and Y- directions include the unavoidable unbalances 

of the disks. They are expressed as follows, 

2 2

1 1 21 2 2

2 2

1 2 21 1 2

{ cos( ) 0 cos( ) 0}

{ sin( ) 0 sin( ) 0}

T

xz

T

yz

m e t m e t

m e t m e t

αα

α α

= Ω Ω + Ω Ω +

= Ω Ω + Ω Ω +

Q

Q
                                                            (3) 

where, 2

11 1 cos( )m e t αΩ Ω +  and 2

11 1 sin( )m e t αΩ Ω +  are the unbalanced forces of the first disk in the 

X- and Y- directions with eccentricity 1e  and initial phases 1α respectively. And correspondingly, 
2

22 2 cos( )m e t αΩ Ω + and 2

22 2 sin( )m e t αΩ Ω +  are the unbalanced forces of the second disk with 

eccentricity 2e  and initial phases 2α  along X- and Y- directions. 

Critical speeds of the dual-disk rotor system. In the analysis of the dual rotor system critical speeds, 

the assumptions are as follows. It is acceptable to assume that
xz yz
= =K K K , because the situation in 

the XZ- plane is similar to that in the YZ-plane. The damped effect is not considered for the rotor 

system, i.e., C is taken as zero in the motion equations, and the external forces are not included either. 

 Introducing the complex coordinates i= +q X Y  in the homogeneous equations associated with 

Equations (1) with the above assumptions, the equation of motion is reduced to 

i− Ω + =Mq Jq Kq 0�� �                                                                                                                           (4) 

Then introducing a solution of the type 0

i te ω=q q into the reduced equation, the following algebraic 

linear equation is readily obtained:  

2

0
ω ω− + Ω + =M J K q 0( )                                                                                                                 (5) 

where ω  is the whirl frequency. The characteristic equation allowing computation of the whirl 

frequency is 

2
0ω ω− + Ω + =M J K                                                                                                                        (6) 

Equation (6) has 8 real roots, 4 of which are positive, corresponding to the forward whirl, and the 

other 4 roots related to the backward whirl are negative. 

Gyroscopic effects on the dual-disk rotor system 

To analyze the gyroscopic effect on the dual-disk rotor system and compare the effect on the critical 

speed and unbalance response of the system under different asymmetric conditions, the eigenvalues 

of the undamped dual-disk rotor system are calculated by solving the characteristic equation (6), and 

the numerical integration of Esq. (1) is also carried out by using Runge-Kutta method. The initial 

parameters selected in the model are as follows. Both of the masses of two disks are 1Kg with 

diameter 200mm, and the shaft with an elastic modulus of 2.06×10
11

Pa is 12 mm in diameter and 

450mm in length. The distance between the first disk and the support point A is a=150 mm. The 

second disk is located in symmetry, and the distance between the two disks is b=150 mm. The 

support stiffness at two points is set as to KA = KB =1.0×10
8
 N/m.  

For comparing the gyroscopic effect under different asymmetric conditions, the parameters used in 

the following 4 asymmetric cases are here based on the initial parameters.  

Case (a): The distance between the first disk and the support point A and the one between the two 

disks are all altered from 150 mm to 100 mm, i.e., a=b=100 mm. 
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Case (b): The distance between the first disk and the support point A and the one between the two 

disks are all changed to 80 mm, i.e., a=b=80 mm. 

Case (c): The support stiffness at the point B is set as to KB =1.0×10
6
 N/m instead. 

Case (d): The support stiffness at the point B is converted to KB =1.0×10
4
 N/m. 

Gyroscopic effects on the critical speeds. In order to compare gyroscopic effect on the critical speed 

of the undamped rotor system with two disks, four asymmetry cases mentioned above are considered. 

Case (a) and (b) will be referred to as position asymmetry which in case (b) is greater than that in case 

(a). Besides, case(c) and (d) will be as the support stiffness asymmetry, and the latter is more 

asymmetric than the former. The Campbell diagrams of the system in the 4 asymmetric cases 

mentioned above are illustrated in Fig. 2(a)~(d), in which ‘B’ denotes backward whirl, and ‘F’ 

forward whirl, and the dotted line ω = Ω  is drawn at an angle of 45° to the x-axis. 

The Campbell diagrams of Fig. 2(a)~(d) are corresponding to the 4 asymmetric cases (a)~(d), from 

which it can be seen that as the rotating speed increases, the stiffening due to gyroscopic effect 

increases and the eigenvalues for the forward whirl increases and for the backward whirl decreases. 

Moreover, the more asymmetric the rotor system is, the more obvious differences due to the 

gyroscopic effect are. 

Whenever the rotating speed coincides with any of the eigenvalues, resonance occurs and thus we 

can confirm the critical speeds at the points of intersection between the dotted line and the plots of 

eigenvalues. In each of the Campbell diagrams shown in Fig. 2, two intersection points give the first 

two order critical speed, and the other two can not be obtained as the rotating speed increasing. The 

first two order critical speed for the 4 asymmetric cases are compared and listed in Table 1. 

Table1 Gyroscopic effect on the critical speed in 4 asymmetric cases 

Variable Order SNG /Hz FSWG/Hz DR 

Case(a)  

a=b=100 mm 

First 43.4371 45.7344 5.29% 

Second 186.8171 298.5839 59.83% 

Case(b)  

a=b=80 mm 

First 47.0434 51.5243 9.53% 

Second 208.3776 433.8334 108.20% 

Case(c) 

KB=1.0×10
6
N/m 

First 41.8657 43.4511 3.79% 

Second 152.0841 172.3656 13.34% 

Case(d) 

KB =1.0×10
4
N/m 

First 36.4679 37.3763 2.49% 

Second 123.7397 154.6155 24.95% 

*Note: SNG-critical speed without gyroscopic effect; FSWG-forward whirl critical speed with gyroscopic effect; 

DR-deviation rate between the SNG and FSWG 

From Table 1, it is clearly seen that the gyroscopic effect on the critical speed is obvious. When the 

position and support stiffness asymmetry existing, the first order critical speed of the dual-disk rotor 

system with gyroscopic effect is little higher than that without the gyroscopic effect, but the second 

order critical speed is much higher than that without gyroscopic effect. In addition, the gyroscopic 

effect is more obvious in the greater asymmetry cases (b) and (d) than that in the cases (a) and (c).  
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(a)When a=b=100 mm            (b) When a=b=80 mm 
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(c) When KB=1.0×10
6
 N/m         (d) When KB=1.0×10

4
 N/m 

Fig. 2. Campbell diagram in 4 asymmetric cases 

Gyroscopic effects on unbalance responses. The simulations are carried out by numerical 

integration of Esq. (1) by using Runge-Kutta method to analyze the gyroscopic effects on the 

unbalance responses. In the numerical simulation for the unbalance responses of the rotating disks, 

the unbalances of the two disks are set as to 300g.mm, and the rotating speed of the rotor varies from 

about 30Hz to 150Hz, and the other parameters are the same as for Fig. 2. Four different asymmetric 

cases are calculated respectively. The obtained unbalance responses amplitudes of the first disk along 

the rotating speed are illustrated in Fig. 3.  
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(a)When a=b=100 mm                   (b) When a=b=80 mm 

Figures 3(a)~(d) are corresponding to the cases (a)~(d) respectively, in which ‘with GYRO’ and 

‘without GYRO’ denote with and without consideration of the gyroscopic effect respectively. From 

Fig. 3 it can be clearly seen that the unbalance response amplitudes with and without consideration of 

the gyroscopic effect are not equal at the same rotating speed and their peaks are not coinciding with 

each other. And predominantly due to the gyroscopic effect, the amplitudes are smaller that that 

without gyroscopic effect, when the rotating speed exceeding a certain speed. Gyroscopic effect plays 

an important role in the unbalance response, and the role is more obvious as the position asymmetry 

and support stiffness asymmetry become greater. 
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Fig. 3. Diagram of unbalance response amplitudes of the first disk along the rotating speed 

Results and conclusions 

The model of a dual-disk rotor system is established, in which the corresponding gyroscopic effects 

are considered. The gyroscopic effect on the critical speed and unbalance responses of the rotor 

system are investigated in the conditions of position asymmetry and the support stiffness asymmetry. 

The following conclusions are drawn. 

(1) As the rotating speed increases, the eigenvalues for the forward whirl increases and for the 

backward whirl decreases due to gyroscopic effect. The first order critical speed of the dual-disk rotor 

system with gyroscopic effect is little higher than that without the gyroscopic effect, but the second 

order critical speed is much higher than that without gyroscopic effect. In addition, the gyroscopic 

effect is more obvious in the greater asymmetry. 

(2)The gyroscopic effect plays an important role in the unbalance response under the position 

asymmetry and support stiffness asymmetry conditions. And the role is more obvious as the 

asymmetry become greater. So, it is not reasonable to ignore the gyroscopic effect of the dual-disk 

rotor system. 
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