Finite Element Analysis of a Lumbar Vertebra Reconstructed by Biocomposite Alloplastic Grafts

Abstract:

Article Preview

This research approaches the fourth lumbar (L4) vertebra reconstruction by a tronconic alloplastic graft fabricated by a powder metallurgy technology using Ca5(PO4)3(OH) (hydroxyapatite), TiH2 (titanium hydride) and CaCO3 (calcium carbonate) particles as initial powder mixture. The high frequency of the L4 vertebra fractures due to motor vehicle traffic accidents justify the necessity of vertebral reconstruction. This approach simulates the biomechanical behavior of the ANSYS model consisting in the L4 vertebra and the tronconic biocomposite graft during the frontal impact load. The von Misses stress and strain responses from the model depend on the physical and mechanical properties of the biocomposite grafts, experimentally determined. The best simulated mechanical behavior corresponds to the mechanical shielding phenomenon occurring from the biocomposite graft on behalf of the L4 vertebra.

Info:

Periodical:

Edited by:

Mihai Demian

Pages:

126-135

Citation:

D. Coman et al., "Finite Element Analysis of a Lumbar Vertebra Reconstructed by Biocomposite Alloplastic Grafts", Advanced Engineering Forum, Vol. 27, pp. 126-135, 2018

Online since:

April 2018

Export:

Price:

$41.00

* - Corresponding Author

[1] D.F. Huelke, G.M. Mackay, A. Morris, Vertebral Column Injuries and Lap-Shoulder Belts, J. Trauma. 38(4) (1995) 547-556.

DOI: https://doi.org/10.1097/00005373-199504000-00014

[2] S. Ball, A.R. Vaccaro, T.J. Albert, J.M. Cotler, Injuries of the Thoracolumbar Spine Associated with Restraint Use in Head-On Motor Vehicle Accidents. J. Spinal Disord. 13(4) (2000) 297-304.

DOI: https://doi.org/10.1097/00002517-200008000-00005

[3] Information on http://www.safercar.gov.

[4] Information on http://www.nasva.go.jp/mamoru/en/assessment_car/crackup_other.html.

[5] Information on http://www.euroncap.com.

[6] Information on http://www.ancap.com.au.

[7] T.M. Keaveny, W.C. Hayes, Mechanical properties of cortical and trabecular bone, in Hall BK (ed): Bone. Boca Raton, FL, CRC Press, 7(1993), pp.285-344.

[8] M.E. Muller, M. Allgower, R. Schneider, and H. Willenegger, AO Manual of Internal Fixation, 3rd Edition, Berlin, Springer-Verlag, (1991).

DOI: https://doi.org/10.1007/978-3-662-02695-3

[9] M. Aebi, V. Arlet, J.K. Webb J.K. (Editors) AO Spine Manual – Principles and Techniques (Vol.1) and Clinical Applications (Vol.2) Georg Thieme Verlag Suttgart, New York, (2007).

[10] M. Linder, S. Hoeges, W. Meines, K. Wissenbach, R. Smeets, R. Telle, R. Poprawe, H.Fischer, J. Biomed Mater. Res. A 97(4) (2011) 466-471.

[11] J.P. Li, P. Habibovic, M. van don Doel, C.E. Wilson, J.R. de Wijn, C.A. van Blitterswijk, K. de Groot, Bone in growth in porous titanium implants produced by 3D fiber deposition, J. Biomaterials 28 (2007) 2810-2820.

DOI: https://doi.org/10.1016/j.biomaterials.2007.02.020

[12] D. Espalin, K. Arcaute, D. Rodriguez, F. Medina, M. Posner, R. Wicker, Fused deposition modeling of patient-specific polymethylmethacrylate implants, Rapid Prototyping J. 16(2010) 164-173.

DOI: https://doi.org/10.1108/13552541011034825

[13] C.H. Soderlund, V. Pointillart, M. Pedram, G. Andrault, M. Vital, Radiolucent cage for cervical vertebral reconstruction: A prospective study of 17 cases with 2-year minimum follow-up, European Spine J. 13/8 (2008) 685-690.

DOI: https://doi.org/10.1007/s00586-004-0747-8

[14] O. Lindahl, Mechanical properties of dried defatted spongy bone, Acta Orthop. Scand., 47 (1976)  11-19.

DOI: https://doi.org/10.3109/17453677608998966

[15] S. Struhl, S.A. Goldstein, D.L. Dikie, M.J. Flynn, L.S. Mathews, The distribution of mechanical properties of thrabecular bone within vertebral bodies and iliac crest: correlation with computed tomography density, Transactions of the Orthopedic Research Society, 1977,  262.

[16] R.M. Urban, J.J. Jacobs, M. J. Tomlinson, J. Gavrilovic, J. Black, M. Peoch, J. Bone Jt. Surg. Am 82 (2000) 457-477.

[17] M. Browne, P. J. Gregson, Effect of mechanical surface pretreatment on metal ion release, J. Biomaterials 21(4) (2000) 385-392.

DOI: https://doi.org/10.1016/s0142-9612(99)00200-8

[18] D. Buser, R.K. Schenk, S. Steinmann, J.P. Fiorellini, C.H. Fox, Stich H., Influence of surface characteristics on bone integration of titanium implants, J. Biomed. Mater. Res. 25 (1991) 889–902.

DOI: https://doi.org/10.1002/jbm.820250708

[19] Information on http://www.azonano.com/article.aspx?ArticleID=2453.

[20] I.G. Bucse, C. Ristoscu, B.A. Olei, Structural analysis of PM hydroxyapatite-based biocomposites elaborated by two-step sintering, J. Optoelectron Adv. Mater. 17(2015) 1050-1054.

[21] G. Sima, I. Cinca, C. Teisanu, O. Gingu, Mechanical characterization of the PM hydroxyapatite-based biocomposites elaborated by two-step sintering, Advanced Materials Research, Trans Tech Publications, Switzerland, 1128 (2015) 162-170.

DOI: https://doi.org/10.4028/www.scientific.net/amr.1128.162

[22] J.S. Day, M. Ding, J.C. van der Linden, I. Hvid, D.R. Sumner, H. Weinans, A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage, J. Orthop. Res. 19 (2001) 914-918.

DOI: https://doi.org/10.1016/s0736-0266(01)00012-2

[23] T. Belytschko, R.F. Kulak, A.B. Schultz, Finite element stress analysis of an inter-vertebral disc. J. Biomech. 7(3) (1974) 277-285.

[24] B.T. Dickey, M.A. Tyndyk, D.A. Doman, D. Boyd - In silico evaluation of stress distribution after vertebral body augmentation with conventional acrylics, composites and glass polyalkenoate cements, J. Mech. Behav. Biomed. Mater. 5(1) 2012 283–290.

DOI: https://doi.org/10.1016/j.jmbbm.2011.08.007