Study and Elucidation of Fractal Dimension in Anionic and Cationic Clays: Relationship between Fractal Dimensions to the Amount Adsorbed and Pore Size

Abstract:

Article Preview

In order to search the correlation between textural properties and geometrical heterogeneity in clays, as characterized by the surface fractal dimension, we used, three different cationic clays; namely Kaolin of Hamam Dbagh, Montmorillonite (Mt) of Maghnia and a sample prepared from Sodium Montmorillonte (Na-Mt)) and three different synthetic anionic clays, ZnAlCO3, MgAlCO3 at a molar ratio equal to three (R=3), and NiAlCO3 with different molar ratios (R=2, R=3 and R= 4). This DS parameter was evaluated from nitrogen (N2) analysis gas. the fractal Frenkel-Halsey-Hill (FHH) (DS) models was used to estimate the surface fractal dimensions at two ranges of relative pressure, the first between 0.08 and 0.22, which were found Ds to be 2.59, 2.53 and 2.68 from Kaolin, Montmorillonite and Sodium Montmorillonte clays respectively and 2.33, 2.61, 2.53, 2.56 and 2.56 for ZnAlCO3 and MgAlCO3, NiAlCO3 (2, 3 and 4) respectively, and other at medium relative pressure, which there was an excellent linear adjustment for F-H-H equation within the range between 0.37 and 0.82, which were found Ds to be 2.77, 2.64 and 2.82 for Kaolinite, Montmorillonite and Sodium Montmorillonte clays respectively, and 2.68, 2.64, 2.40, 2.60, 2.47 for ZnAlCO3, MgAlCO3, NiAlCO3 (2, 3 and 4) respectively. SEM Characterization confirmed the heterogeneous distribution of the particles and the BET analysis confirmed the fractal nature of the surface of these materials. The zeta potential of the sample which is most used as an indicator of dispersion stability, show a proportionality between increases of zeta potential with increase of dimension fractal (DS), for the same type of clays ( (NiAlCO3) with (R=2, 3 and 4) and Mt, Na-Mt). Key words: Anionic clays; Cationic clays; Fractal dimension; geometrical heterogeneity; Frenkel-Halsey-Hill model.

Info:

Periodical:

Pages:

25-42

Citation:

S. Bahah et al., "Study and Elucidation of Fractal Dimension in Anionic and Cationic Clays: Relationship between Fractal Dimensions to the Amount Adsorbed and Pore Size", Advanced Engineering Forum, Vol. 30, pp. 25-42, 2018

Online since:

November 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] Siyang Wang, Pattarasai Tangvijitsakul, Zhe Qiang, Sarang M Bhaway, Kehua Lin, Kevin A. Cavicchi, Mark Deland Soucek, and Bryan D. Vogt, Role of amphiphilic block copolymer composition on pore characteristics of micelle-templated mesoporous cobalt oxide films.

DOI: https://doi.org/10.1021/acs.langmuir.6b01026

[2] Guodong Deng, Zhe Qiang, Willis Lecorchick, Kevin A. Cavicchi, and Bryan D. Vogt, Nanoporous Nonwoven Fibril-Like Morphology by Cooperative SelfAssembly of Poly(ethylene oxide)-block-Poly(ethyl acrylate)-block Polystyrene and Phenolic Resin, Langmuir , 30, 9(2014).

DOI: https://doi.org/10.1021/la404964c

[3] Sarang M. Bhaway, Zhe Qiang, Yanfeng Xia, Xuhui Xia, Byeongdu Lee, Kevin G. Yager, Lihua Zhang, Kim Kisslinger, Yu-Ming Chen, Kewei Liu, Yu Zhu, and Bryan D. Vogt, Operando Grazing Incidence Small-Angle X-ray Scattering/X-ray Diffraction of Model Ordered Mesoporous Lithium-Ion Battery Anodes, ACS Nano,11,2 (2017).

DOI: https://doi.org/10.1021/acsnano.6b06708

[4] M. Ben Ohoud, Thesis, university of Orléans, 266 (1988).

[5] A. De Stefanis, A.A.G. Tomlinson, Th. Steriotis , G.Ch. Charalambopoulou, U. Keiderling, Applied surface science, 253 (2007), 2633-2639.

[6] M. S. Hassan, Thesis, Materials. Institut National Polytechnique of Lorraine - INPL, 158 (2005).

[7] V. Rives, Nova Science, New York, (2001).

[8] S. V. Krishna, G. Pugazhenthi, J. Exp. Nanosci 8 (2013), 19–32.

[9] Ruixia Shi, Ping Yangn, Yunyu Yin, Xiaobin Dong, JiaLi, Ceram. Int. 40 (2014), 6855–6863.

[10] V. R.Constantino, T. J. Pinnavaia, Inorgan. Chem, 34 (1995), 883-892.

[11] A. Burzlaff, S. Brethauer, C. Kasper, B. Jackisch, T. Scheper, Cytometry Part A. 62A (2004), 65.

DOI: https://doi.org/10.1002/cyto.a.20085

[12] R. Duda, L. Rejl, D. Slivka, Minerals (in Czech).Aventinum, Prague. 519 (1990).

[13] J. H. Bernard, R. Rost, Encyclopaedic knowledge of minerals (in Czech).1st ed. Academia, Prague. 704 (1992).

[14] E. ERRAIS, Réactivité de surface d'argile naturelle, étude de l'adsorption de colorants anioniques, Thesis, university Strasbourg, (2011).

[15] F. Bergaya, G. Lagaly, (Eds.), Handbook of Clay Science, first ed. Developments in Clay Science 1. Elsevier B.V., Amsterdam, (2006), 4–8.

[16] F. Bergaya, G. Lagaly, Handbook of Clay Science. Second ed. 5. Elsevier B.V., Amsterdam, (2013).

[17] S. W. SING. Kenneth, Carbon, Vol.32, No. 7 (1994) 1311-1317.

[18] Xiangjun Liu., Jian Xiong, Lixi Liang, J. Nat. Gas Sci. and Eng. 22 (2015) 62-72.

[19] R. Celis, J. Cornejo, M. C. Hermosin, Clay Miner, 31 (1996) 335 – 363.

[20] A. K. Helmy, E. A. Ferreiro, S. G. De Bussetti, N. Peinemann, Colloid Polym. Sci. 276 (1998) 539–543.

[21] M. Hajnos, L. Korsunskaia, Y. Pachepsky, Soil Tillage Res, 55 (2000), 63–70.

[22] S. Zhang, S. Tang, D Tang, W. Huang, Z. Pan, J. Nat. Gas Sci. and Eng. 21 (2014) 929-939.

[23] Y.Yang, M., R., Tang Sulpice H.Chen, S.Tian, Y Ban, J. Plant Growth Regul.  (2014), 33, 612–625.

[24] P. Pfeifer, M.W. Cole, J. New Chem, 14 (1990) 221.

[25] M. Jaroniec, M. Kruk, JP. Olivier, Langmuir 13(5) (1997), 1031–5.

[26] N. R. Khalili, M. Pana, G. Sand, Carbon 38 (2000) 573–588.

[27] J. G. Carriazo, R. Molina, S. Moreno, Fractal dimension and energetic heterogeneity of gold-modified Al\Fe\Ce pilc's. Appl. Surf. Sci. 255 (2008) 3354–3360.

DOI: https://doi.org/10.1016/j.apsusc.2008.09.054

[28] A. Gil, G. Yu Cherkashinin, S. A. Korili, J. Chem. Eng. Data 49 (2004) 639–641.

[29] W. T. Reichle, S. Y. Kang, D.S. Everhardt, J. Catal, 101 (1986), 352–359.

[30] F. Bellezza, M. Nocchetti, T. Posati, S. Giovagnoli, A. Cipiciani, J. Colloid. Interf. Sci. 376 (2012) 20–27.

[31] F. Kovandaa, D. Kolouseka, Z. Cılova, V. ulınsky, Appl. Clay Sci. 28 (2005) 101–109.

[32] L-g Yan, K. Yang, R-r. Shan, T. Yan, J. Wei, S-j. Yu, H-q. Yu, B. Du, J. Colloid. Interf. Sci. 448 (2015) 508–516.

[33] L. Vaculikova and E. Palevova, Acta Geodyn. Geomater, Vol.2, No.2 (138) (2005) 167-175.

[34] Z. Navratilova, P. Wojtowicz, L. Vaculikova, and V. Sugarkova, Journal of Acta Geodynamica. Geomaterialia, 4 (2007) 59-65.

[35] B. Saikia, G. Parthasarathy, India. J. Mod. Phy. 1, (2014)206-210.

[36] G. Sposito, Clays and Clay Miner. Vol. 31, No. 1, (1983) 9-16.

[37] D. Burhan, C. Emin, Investigation of Central Anatolian Clays by FTIR Spectroscopy, Int. J. Nat. Eng. Sci. 3 (3) (2009) 154-161.

[38] K. S. W Sing, D. H Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Pure Appl. Chem. 57 (4) (1985) 603-619.

[39] Ang Li , Wenlong Ding, Jianhua He, Peng Dai, Shuai Yin a, Fei Xie.a, Mar. Petrol. Geol. 70 (2016) 46-57.

[40] S.J. Gregg, K. S. W. Sing, Ads. Surf. area poros. (1982), 2nd Ed, London.

[41] S. Brunauer, P Emmett, E. Teller, J. Am. Chem. Soc. 60 (1938) 309-319.

[42] J. Zhou, S. Yang, J. Yu, Z. Shu, J. Hazard. Mater, 192 (2011) 1114–1121.