Advanced Engineering Forum Online: 2012-09-26
ISSN: 2234-991X, Vols. 6-7, pp 294-298

doi:10.4028/www.scientific.net/AEF.6-7.294

© 2012 The Author(s). Published by Trans Tech Publications Ltd, Switzerland.

The Programming Algorithm Based on Embedded System for the Output
Conversion of the Humidity & Temperature Sensor SHTxx

Zou Jiupeng' 2, Dai Yugiang™®, Liu Xuewu' ¢, Zhang Liming" °
and Liu Fengxia" ®

'Dalian University of Technology, Dalian, P. R. China

?zoujp@dlut.edu.cn, °daiyugiang@dlut.edu.cn, liuxuewu@dlut.edu.cn, ‘zZImdI718@sina.com,
®liufx@dlut.edu.cn

Keywords: Sensor SHTxx; Programming algorithm; CRC; Embedded system;

Abstract. In order to avoid the digital humidity & temperature sensor SHTxx’s output values
conversion consume many quantity of storage location, and spend more operation time, a group
new type of conversion polynomials, and corresponding programming algorithm were deduced and
tested. The polynomials are precise equivalent to the conversion formulas provided by the
manufacturers, but contain only Binary fixed-point integer, fractional part, and 2~. Using
fixed-point calculations and shift operations instead of floating-point calculations, the results of
program code reduction amount of 60 percent, and computing speed faster nearly 4 times than the
original algorithm are obtained. Furthermore, a kind of speedy and unified CRC algorithm for
read-out data of the sensor is proposed. The novel programming algorithm makes the output
conversion more simplified, so it could pave the way for the low-end embedded applications of
SHTxx.

Introduction

SHTxx series is Switzerland SENSIRION’s produces of high integrated digital Humidity &
Temperature Sensor, with high measurement precision (temperature 14 bit and Humidity 12 bit
resolution ratio), it can be widely applied to many domain such as HVAC (Heating Ventilation Air
Conditioning), weather station, workshop humidity and temperature control, medical treatment,
automobile and home appliance etc.

However, SHTxx does not like the DS18B20 which directly outputs the Binary integer and
decimal complement form of measurement data, but outputs unsigned binary integer: corresponding
to the measuring temperature is -41.08°C, 14 bit output data is x000H; when 100°C, in between
371FH to 3720H. Another not enough is that its output value and measured value don’t be the linear
relationship. So only the conversion and non-linearity compensation of the output data are done by
receiving party, the real temperature value Tture and humidity value RHture can be solved.

It is significant to research simple and accurate conversion algorithm for decreasing program
code and speeding up the computing, so the SHTxx can be applied widely.

Defects of Conversion and Calibration by Floating Point Calculating
SENSIRION manufacturer propose the conversion formulas as follows [1]:
Temperature conversion:

Tture(oc):d1+d2XT0ut+d3x(Tout_g)2 (1)

Humidity conversion:

RH, . (%RH)=cl+c2xRH,,, +c3xRH,, > 2

Besides the conversion, the Humidity compensation associated to temperature is also required:

RHture (YoRH) = (Tture(oc)—25)% (t1+1t2x RHout) + RHline (3)

This article is an open access article under the terms and conditions of the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0)

https://doi.org/10.4028/www.scientific.net/AEF.6-7.294

Advanced Engineering Forum Vols. 6-7 295

In the aforesaid formulas, d1 is determined by the operating voltage, d2, d3 and g are conversion
coefficients determined by the number of bits of the temperature output. To convert into Celsius
temperature, the d1 for 5V and 3V are -40.1 and -39.6 respectively (offset hot temperature rise).
Corresponding to 14 bit and 12 bit output, the d2, d3 and g are given in the table 1.

Table 1. The temperature conversion coefficients

T output d2 d3 g
14 bit 0.01 -2E-8 7000
12 bit 0.04 -3.2E-7 1750

The conversion coefficients cl, c2 and ¢3, compensation coefficients t1 and t2 are determined by
the number of bits of the humidity output. There is some difference between V4 and V3 version,
corresponding to 12 bit and 8 bit of the output, these coefficients please see the table 2.

Table 2. The humidity conversion and compensation coefficients

RH% Version V4 ¢3 Version V3% ¢3*

output . " "

output cl c2 c3 cl c2 c3 tl 2

12 bit -2.0468 0.0367 -1.5955E-6 -4.0000 0.0405 -2.8000E-6 0.01 0.00008
8 bit -2.0468 0.5872 -4.0845E-4 -4.0000 0.6480 -7.2000E-4 0.01 0.00128

Because of the coefficients contain decimal part, and the conversion formulas are non-linear
(Contains quadratic terms), multi-byte floating-point calculations must be done. Obviously, the
calculated quantity of the receiving procedures is larger, that spent a lot of time so the real-time
performance of multi-sensors processing system, transmission unit or instrument, will be
deteriorated. Furthermore, the more disturbing problem is that floating-point program looks simple,
but after compiled the code is greater amount (total program generally more than 7KB). It is too
large to the ROM of most base types MCU, such as 80C51, PIC16 etc, so SHTxx would be limited
to use in the low-end embedded system. Although the SENSIRION’s datasheet has given the
linearization conversion formulas for the humidity, and two fold line for the temperature to avoid
square operators, it is at the cost of loss of accuracy (the maximum error of humidity conversion is
increased from 0.1% to 2.2%, and 0.1% to 0.8% the temperature conversion), the converting errors
is several times more than the sensor’s measurement error.

The Fixed-Point Transform of Floating Point Conversion Formulas

For the embedded microprocessor or microcontroller which does not have float-point unit, it is
more quick and has less code size by several times using fixed-point calculation and shift operation
to substitute for running a float Point program. For this reason, it is the key to transform all the
items in the before-mentioned fomulas to the fixed-point binary number, and multiply by or divide
by 2N. For this purpose, the transformed expressions are deduced. For the 5V working voltage and
14 bits output, the temperature conversion formula (1) can be transformed to:

T, .('C)=—40.1+0.01xT,,,—2E-8x (T, ,—7000)>
~ (—40—0.1)+[(41/4096)x T, , 1—(1/ GE7)x(T,,,—7000)* (4)
~ (—28H—0.00011010B)+ (T, —1B58H)? /(2FAFH x 2')]

ut

x 29H /2'%)—[(T,

ut ut

In the expression, the first constant term - 40.1 is broken down into Single-Byte binary integer
and binary fractional part, so the item can be calculated with fixed-point addition and subtraction,
the conversion error of fractional part relative to the quondam formula (1) is only 1.5%o. The
coefficient 0.01 in second item is changed to a form of the integer 29H dividing by 22, so the
floating-point arithmetic can be replaced by fixed-point multiplication and shift operation. The

296 Information Technology for Manufacturing Systems lli

-2E-8 in third item is changed to the fraction form, and the denominator can be transformed into
two bytes binary integer multiply by 2'% so these can be solved by Double-Byte fixed-point
multiplication and division, and N times right shift operation to substitute for divide by 2.

In the same way, corresponding to the 12 bit output of the relative humidity, formula (2) can be
written as:

RH;,, (% RH) = —2.0468 +0.0367 x RH,,,—1.5955E -6 x RH,,,
~ (—2—0.0468) +[(301/8192)xRH,,,1—[(1/626763)x RH] (5)
~ (—02H—0.00001100 B) + (RH,,, x12DH /2!*) —(RH,,,*> /9905H / 2*)

And formula (3) can be written as:
RH,,.(*%RH)=(T,,,—25)x(0.01+0.00008 xRH ,,,)+ RH,, ©)

~ (T, —25)%(0.00000011 B+ RH,,, /30D4H)+ RH ;,

After transformation, the conversion expressions are (4), (5), and (6), they have high accuracy,
the errors relative to the original formulas (1)-(3) are all under 2%o.

Operation Process and Solving Fractional Part

There are only double-byte binary integer, single-byte binary fractional part, and 2" in the
transformation expressions. Consequently, it can be compute by using the existing fixed-point
multiplication and division standard procedures, and right shift operation.

In order to facilitate the integer operations, the multiplication would first be done, then is
division, and last Right shift operation for every item. Because fractional part does not appear in the
product of multiplication, and 4 bytes are required to store the product.

For every conversion expressions, an integer division must be done. The quotient is integer part,
if it 1s 0, the integer part is 0. To get the decimal part, the remainder would be left shift 8 times (to
complement zero on the right), again divide by the same divisor. It is a byte binary fractional part
that new 8 bits quotient. Only a byte binary decimal is retained, the truncation error is less than 128
~ 3.93%o. The second remainder could be discarded.

Instead of dividing by 2%, it has less computation workload to use right shifting N times
(vacancy on the left side is filled with zeros). If the shifting times N is more than 8, one byte
fractional part (second quotient) would be directly wiped off (see Fig. 1 with red mark), then N-8
bits are erased from the right of the integer (if the leftmost bit wiped off is 1, it would carry). Lastly,
8 bit from right to left of remainder integer (if the bits are not enough to complement zero on the
left) are taken as the fractional part (see Fig.1). It looks more complex, but the real program is
simpler.

m bit integer 8 bit decimal N-8 bits erased 8 bit second quotient
A AN A AL
Ll f2]u]o]o]s|7]6]s|4|3|2]}] [§]2]6]5]4]3]2]%|

Fig. 1 The partition of integer and decimal for calculated digits

Finally, the integer and fractional part of every item would be algebraically added, the carry of
fractional part is added to the integer. It is conformity with the rule of multi-bytes addition and
subtraction, so both can be computed together, the result’s bits number of fractional part does not
change. For all of the calculations are true form, it is relatively simple.

The novel algorithm program compares with the floating-point calculation program, the code
size decreases from 1384 bytes to 550 bytes, computing time reduces from 4483 to 1242 machine
cycle. Even with CRC, the key operating, digital display, serial communication, and other functions,
the program total code size is only about 3 KB in assembler programming language. So, even the
low-grade MCU only 4 KB program memory and dozens of bytes of RAM (as 80C51, ATmega48,

Advanced Engineering Forum Vols. 6-7 297

etc.), also qualified for these tasks. And for multitasking system, the efficiency and real-time
performance may be significantly improve because consumed resources for conversion of the
sensor data and CRC are reduced.

CRC (cyclic redundancy check) of Read-out Data of the Sensor

The read timing sequence of SHTxx is that a read command (03H for temperature and 05H for
humidity) must be inputted firstly. After 11/55/210mS (8/12/14-bit resolution ratio), it serially
outputs two bytes of measurement data and one byte of CRC checksum [2, 3]. Noted two important
points: 1. the command bytes (03H or 05H) must first be bring into calculation, follow by the
measurement data to obtain the correct CRC checksum; 2. The CRC checksum must be reversed
that can compare with another CRC checksum from SHTxx, if the both are equal, the transmission
is right.

SENSIRION manufacturer does not provide CRC polynomial, only a 256 byte CRC lookup
table. It consumes more program storage units for looking-up table and calculating. Referencing
SHTxx internal CRC generating circuit (see Fig.2) [4], it may be computed by bit operation, as is
more feasible for low-grade MCU, but the operation is slightly slower.

Input Bit
LSB MSB

r—o—-1-—2-—3~@~4~—@~5-6-7

Fig.2 SHTxx CRC-8 hardware generating circuit

Compare with the internal CRC generating circuit of digital temperature sensor DS18B20 (see
Fig.3), the difference between both is only inverted sequence to generate CRC, that is D7=D0%*,
D6=D1%*, -+, DO=D7%*. So as long as every inputted one byte data is reversed order, the CRC
algorithms of DS18B20 [6] can be borrowed, the CRC checking polynomial as follows:

g(x)=x+x" +x* +1
InputBit
MSB LSB

[—7*6*5~4—@~3-—@~2*1~0

Fig. 3 DS18B20 CRC — 8 hardware generating circuit

That can decrease again program code, and speed up the operation. To reverse order the compute
result, the CRC is equivalent to that obtained by bit operation. Because the CRC from SHTxx must
be reversed order, then can compare with the computed CRC, so the CRC by borrowing the
algorithms of DS18B20 does not need be reversed order, can compare with the CRC from SHTxx
directly.

Conclusion

For the conversion of SHTxx output value, the above developed programming algorithm can
markedly decrease program code size and consumed resources of the CPU, and can speed up the
computing. So not only the low-grade MCU can be used for the conversion, also the efficiency and
real-time performance may be significantly improved for multitasking system.

The programming algorithm could provide convenience and reduce cost for the multi-points and
follow measurement of humidity and temperature, multi-sensors information fusion, and sensor
communication node of Internet of Things. Furthermore, it provides the possibility that the sensor is
connected to the low-end of consumer electronics.

The fixed-point Transform and shift operation method could also provide reference for similar
embedded programming.

298

Information Technology for Manufacturing Systems lli

References

[1]

[2]

[3]

[4]

[5]

[6]

SENSERION THE SENSOR COMPANY. SHTxx humidity & temperature sensmitter
application note, Non-linearity compensation. Rev 1.5. http://www.sensirion.com

SENSERION THE SENSOR COMPANY. Datasheet SHTIx (SHT10, SHT11, SHT15)
humidity and temperature sensor, Version 4.1. Sept. 2008. http://www.sensirion.com

SENSERION THE SENSOR COMPANY. SHT1x /SHT7x humidity & temperature sensor
system, Evaluation kit available, V2.02. July 2004. http://www.sensirion.com

SENSERION THE SENSOR COMPANY. SHTxx Humidity & Temperature Sensmitter
Application Note CRC. Rev 1.07, http://www.sensirion.com

Li Xiaowei. The temperature and humidity monitoring system based on the technology of
embedded system. Dalian University of Technology, Master Dissertation, 2012

Zou Jiupeng, Lin Yiaoyiao, Zhou Jian. Discussion of CRC coding and hardware fast check [J],
Microcontrollers & Embedded Systems. 100 (2009) 76-78.

