
The Programming Algorithm Based on Embedded System for the Output 
Conversion of the Humidity & Temperature Sensor SHTxx 

Zou Jiupeng1, a, Dai Yuqiang1, b, Liu Xuewu1, c, Zhang Liming1, d                
and Liu Fengxia1, e 

1Dalian University of Technology, Dalian, P. R. China 

azoujp@dlut.edu.cn, bdaiyuqiang@dlut.edu.cn, cliuxuewu@dlut.edu.cn, dzlmdl718@sina.com, 
eliufx@dlut.edu.cn 

Keywords: Sensor SHTxx; Programming algorithm; CRC; Embedded system; 

Abstract. In order to avoid the digital humidity & temperature sensor SHTxx’s output values 

conversion consume many quantity of storage location, and spend more operation time, a group 

new type of conversion polynomials, and corresponding programming algorithm were deduced and 

tested. The polynomials are precise equivalent to the conversion formulas provided by the 

manufacturers, but contain only Binary fixed-point integer, fractional part, and 2
N
. Using 

fixed-point calculations and shift operations instead of floating-point calculations, the results of 

program code reduction amount of 60 percent, and computing speed faster nearly 4 times than the 

original algorithm are obtained. Furthermore, a kind of speedy and unified CRC algorithm for 

read-out data of the sensor is proposed. The novel programming algorithm makes the output 

conversion more simplified, so it could pave the way for the low-end embedded applications of 

SHTxx. 

Introduction 

SHTxx series is Switzerland SENSIRION’s produces of high integrated digital Humidity & 

Temperature Sensor, with high measurement precision (temperature 14 bit and Humidity 12 bit 

resolution ratio), it can be widely applied to many domain such as HVAC (Heating Ventilation Air 

Conditioning), weather station, workshop humidity and temperature control, medical treatment, 

automobile and home appliance etc. 

However, SHTxx does not like the DS18B20 which directly outputs the Binary integer and 

decimal complement form of measurement data, but outputs unsigned binary integer: corresponding 

to the measuring temperature is -41.08℃, 14 bit output data is x000H; when 100℃, in between 

371FH to 3720H. Another not enough is that its output value and measured value don’t be the linear 

relationship. So only the conversion and non-linearity compensation of the output data are done by 

receiving party, the real temperature value Tture and humidity value RHture can be solved. 

It is significant to research simple and accurate conversion algorithm for decreasing program 

code and speeding up the computing, so the SHTxx can be applied widely. 

Defects of Conversion and Calibration by Floating Point Calculating 

SENSIRION manufacturer propose the conversion formulas as follows [1]: 

Temperature conversion: 

2)gT(×3d+T×2d+1d=)(T －℃ outoutture                                       (1) 

Humidity conversion: 

2RH×3c+RH×2c+1c=)RH(%RH outoutline                                    (2) 

Besides the conversion, the Humidity compensation associated to temperature is also required: 

lineouttureture RH+)RH×2t+1t×)25)(T(=)RH(%RH （－℃
                       (3) 

Advanced Engineering Forum Online: 2012-09-26
ISSN: 2234-991X, Vols. 6-7, pp 294-298
doi:10.4028/www.scientific.net/AEF.6-7.294
© 2012 The Author(s). Published by Trans Tech Publications Ltd, Switzerland.

This article is an open access article under the terms and conditions of the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0)

https://doi.org/10.4028/www.scientific.net/AEF.6-7.294


In the aforesaid formulas, d1 is determined by the operating voltage, d2, d3 and g are conversion 

coefficients determined by the number of bits of the temperature output. To convert into Celsius 

temperature, the d1 for 5V and 3V are -40.1 and -39.6 respectively (offset hot temperature rise). 

Corresponding to 14 bit and 12 bit output, the d2, d3 and g are given in the table 1. 

Table 1.  The temperature conversion coefficients 

T output d2 d3 g

14 bit 0.01 -2E-8 7000 

12 bit 0.04 -3.2E-7 1750 

The conversion coefficients c1, c2 and c3, compensation coefficients t1 and t2 are determined by 

the number of bits of the humidity output. There is some difference between V4 and V3 version, 

corresponding to 12 bit and 8 bit of the output, these coefficients please see the table 2. 

Table 2.  The humidity conversion and compensation coefficients 

RH%  
output 

output 

Version V4 c3 Version V3* c3*  

c1 c2 c3 c1* c2* c3* t1 t2 

12 bit -2.0468 0.0367 -1.5955E-6 -4.0000 0.0405 -2.8000E-6 0.01 0.00008 

8 bit -2.0468 0.5872 -4.0845E-4 -4.0000 0.6480 -7.2000E-4 0.01 0.00128 

Because of the coefficients contain decimal part, and the conversion formulas are non-linear 

(Contains quadratic terms), multi-byte floating-point calculations must be done. Obviously, the 

calculated quantity of the receiving procedures is larger, that spent a lot of time so the real-time 

performance of multi-sensors processing system, transmission unit or instrument, will be 

deteriorated. Furthermore, the more disturbing problem is that floating-point program looks simple, 

but after compiled the code is greater amount (total program generally more than 7KB). It is too 

large to the ROM of most base types MCU, such as 80C51, PIC16 etc, so SHTxx would be limited 

to use in the low-end embedded system. Although the SENSIRION’s datasheet has given the 

linearization conversion formulas for the humidity, and two fold line for the temperature to avoid 

square operators, it is at the cost of loss of accuracy (the maximum error of humidity conversion is 

increased from 0.1% to 2.2%, and 0.1% to 0.8% the temperature conversion), the converting errors 

is several times more than the sensor’s measurement error. 

The Fixed-Point Transform of Floating Point Conversion Formulas 

For the embedded microprocessor or microcontroller which does not have float-point unit, it is 

more quick and has less code size by several times using fixed-point calculation and shift operation 

to substitute for running a float Point program. For this reason, it is the key to transform all the 

items in the before-mentioned fomulas to the fixed-point binary number, and multiply by or divide 

by 2
N
. For this purpose, the transformed expressions are deduced. For the 5V working voltage and 

14 bits output, the temperature conversion formula (1) can be transformed to: 

)]2FAFH2(/)H58B1T([)2/H29T()B00011010.0H28(≈

)7000T()7E5/1(]T)4096/41([)1.040(≈

)7000T(8E2T01.01.40)(T

12212

2

2

××+

××+

××+=

－－－－

－（－－－

－－－℃

outout

outout

outoutture -

       (4) 

 

In the expression, the first constant term - 40.1 is broken down into Single-Byte binary integer 

and binary fractional part, so the item can be calculated with fixed-point addition and subtraction, 

the conversion error of fractional part relative to the quondam formula (1) is only 1.5‰. The 

coefficient 0.01 in second item is changed to a form of the integer 29H dividing by 2
12

, so the 

floating-point arithmetic can be replaced by fixed-point multiplication and shift operation. The 

Advanced Engineering Forum Vols. 6-7 295



-2E-8 in third item is changed to the fraction form, and the denominator can be transformed into 

two bytes binary integer multiply by 2
12

, so these can be solved by Double-Byte fixed-point 

multiplication and division, and N times right shift operation to substitute for divide by 2
N
. 

In the same way, corresponding to the 12 bit output of the relative humidity, formula (2) can be 

written as: 

)2/H9905/RH()2/DH12RH()B00001100.0H02(≈

]RH)626763/1[(]RH)8192/301[()0468.02(≈

RH6E5955.1RH0367.00468.2)RH(RH

4213

2

2

outout

outout

outoutline -

－－－

－－－

－－％

×+

××+

××+=

          (5) 

And formula (3) can be written as: 

lineoutture

lineouttureture

RH)H4D30/RHB00000011.0()25T(≈

RH)RH00008.001.0()25T()RH(RH

++×

+×+×=

－

－％
             (6) 

After transformation, the conversion expressions are (4), (5), and (6), they have high accuracy, 

the errors relative to the original formulas (1)-(3) are all under 2‰. 

Operation Process and Solving Fractional Part 

There are only double-byte binary integer, single-byte binary fractional part, and 2
N
 in the 

transformation expressions. Consequently, it can be compute by using the existing fixed-point 

multiplication and division standard procedures, and right shift operation. 

In order to facilitate the integer operations, the multiplication would first be done, then is 

division, and last Right shift operation for every item. Because fractional part does not appear in the 

product of multiplication, and 4 bytes are required to store the product. 

For every conversion expressions, an integer division must be done. The quotient is integer part, 

if it is 0, the integer part is 0. To get the decimal part, the remainder would be left shift 8 times (to 

complement zero on the right), again divide by the same divisor. It is a byte binary fractional part 

that new 8 bits quotient. Only a byte binary decimal is retained, the truncation error is less than 1/2
8 

≈ 3.93‰. The second remainder could be discarded. 

Instead of dividing by 2
N
, it has less computation workload to use right shifting N times 

(vacancy on the left side is filled with zeros). If the shifting times N is more than 8, one byte 

fractional part (second quotient) would be directly wiped off (see Fig. 1 with red mark), then N-8 

bits are erased from the right of the integer (if the leftmost bit wiped off is 1, it would carry). Lastly, 

8 bit from right to left of remainder integer (if the bits are not enough to complement zero on the 

left) are taken as the fractional part (see Fig.1). It looks more complex, but the real program is 

simpler. 

m bit integer       8 bit decimal       N-8 bits erased     8 bit second quotient 
 

… 14 13 12 11 10 9 8 7 6 5 4 3 2 1  8 7 6 5 4 3 2 1 

Fig. 1  The partition of integer and decimal for calculated digits 

Finally, the integer and fractional part of every item would be algebraically added, the carry of 

fractional part is added to the integer. It is conformity with the rule of multi-bytes addition and 

subtraction, so both can be computed together, the result’s bits number of fractional part does not 

change. For all of the calculations are true form, it is relatively simple. 

The novel algorithm program compares with the floating-point calculation program, the code 

size decreases from 1384 bytes to 550 bytes, computing time reduces from 4483 to 1242 machine 

cycle. Even with CRC, the key operating, digital display, serial communication, and other functions, 

the program total code size is only about 3 KB in assembler programming language. So, even the 

low-grade MCU only 4 KB program memory and dozens of bytes of RAM (as 80C51, ATmega48, 

296 Information Technology for Manufacturing Systems III



etc.)，also qualified for these tasks. And for multitasking system, the efficiency and real-time 

performance may be significantly improve because consumed resources for conversion of the 

sensor data and CRC are reduced. 

CRC (cyclic redundancy check) of Read-out Data of the Sensor 

The read timing sequence of SHTxx is that a read command (03H for temperature and 05H for 

humidity) must be inputted firstly. After 11/55/210mS (8/12/14-bit resolution ratio), it serially 

outputs two bytes of measurement data and one byte of CRC checksum [2, 3]. Noted two important 

points: 1. the command bytes (03H or 05H) must first be bring into calculation, follow by the 

measurement data to obtain the correct CRC checksum; 2. The CRC checksum must be reversed 

that can compare with another CRC checksum from SHTxx, if the both are equal, the transmission 

is right. 

SENSIRION manufacturer does not provide CRC polynomial, only a 256 byte CRC lookup 

table. It consumes more program storage units for looking-up table and calculating. Referencing 

SHTxx internal CRC generating circuit (see Fig.2) [4], it may be computed by bit operation, as is 

more feasible for low-grade MCU, but the operation is slightly slower. 

XORXORXOR0 1 2 3 4 5 6 7

LSB MSB
Input Bit

 
Fig. 2  SHTxx CRC-8 hardware generating circuit 

Compare with the internal CRC generating circuit of digital temperature sensor DS18B20 (see 

Fig.3), the difference between both is only inverted sequence to generate CRC, that is D7＝D0*, 

D6＝D1*, …, D0＝D7*. So as long as every inputted one byte data is reversed order, the CRC 

algorithms of DS18B20 [6] can be borrowed, the CRC checking polynomial as follows: 

1)( 458
+++= xxxxg

XORXORXOR7 6 5 4 3 2 1 0

MSB LSB
Input Bit

 
Fig. 3  DS18B20 CRC – 8 hardware generating circuit 

That can decrease again program code, and speed up the operation. To reverse order the compute 

result, the CRC is equivalent to that obtained by bit operation. Because the CRC from SHTxx must 

be reversed order, then can compare with the computed CRC, so the CRC by borrowing the 

algorithms of DS18B20 does not need be reversed order, can compare with the CRC from SHTxx 

directly. 

Conclusion 

For the conversion of SHTxx output value, the above developed programming algorithm can 

markedly decrease program code size and consumed resources of the CPU, and can speed up the 

computing. So not only the low-grade MCU can be used for the conversion, also the efficiency and 

real-time performance may be significantly improved for multitasking system.  

The programming algorithm could provide convenience and reduce cost for the multi-points and 

follow measurement of humidity and temperature, multi-sensors information fusion, and sensor 

communication node of Internet of Things. Furthermore, it provides the possibility that the sensor is 

connected to the low-end of consumer electronics. 

The fixed-point Transform and shift operation method could also provide reference for similar 

embedded programming. 

Advanced Engineering Forum Vols. 6-7 297



References 

[1] SENSERION THE SENSOR COMPANY. SHTxx humidity & temperature sensmitter 

application note, Non-linearity compensation. Rev 1.5. http://www.sensirion.com 

[2] SENSERION THE SENSOR COMPANY. Datasheet SHT1x (SHT10, SHT11, SHT15) 

humidity and temperature sensor, Version 4.1. Sept. 2008. http://www.sensirion.com 

[3] SENSERION THE SENSOR COMPANY. SHT1x /SHT7x humidity & temperature sensor 

system, Evaluation kit available, V2.02. July 2004. http://www.sensirion.com 

[4] SENSERION THE SENSOR COMPANY. SHTxx Humidity & Temperature Sensmitter 

Application Note CRC. Rev 1.07, http://www.sensirion.com 

[5] Li Xiaowei. The temperature and humidity monitoring system based on the technology of 

embedded system. Dalian University of Technology, Master Dissertation, 2012 

[6] Zou Jiupeng, Lin Yiaoyiao, Zhou Jian. Discussion of CRC coding and hardware fast check [J], 

Microcontrollers & Embedded Systems. 100 (2009) 76-78. 

298 Information Technology for Manufacturing Systems III


