Clustering and Rough Set-Based Knowledge Discovery for Product Family Planning

Abstract:

Article Preview

Product family planning has received much attention from both academia and industries. It aims at incorporating customers’ needs into design elements of product family. The main challenger for product family planning originates from difficulties in mapping customer needs to product family specifications. This paper intends to develop a method to improve the mapping process by reusing knowledge from purchased products according to the satisfied customer needs. A knowledge discovery model for product family planning is proposed, where clustering is adopted to partition the purchased products so that commonality of product family could be effectively addressed and rough set is employed to extract the more concise decision rules. A case study of air condition is reported to illustrate the feasibility of proposed approach and associated algorithms.

Info:

Periodical:

Edited by:

Kai Cheng, Yingxue Yao and Liang Zhou

Pages:

45-50

DOI:

10.4028/www.scientific.net/AMM.10-12.45

Citation:

C.J. Zhou and Z.H. Lin, "Clustering and Rough Set-Based Knowledge Discovery for Product Family Planning", Applied Mechanics and Materials, Vols. 10-12, pp. 45-50, 2008

Online since:

December 2007

Authors:

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.