Synchronization of Chaotic Fractional-Order Systems via Fractional-Order Adaptive Controller


Article Preview

In this paper, an adaptive fractional-order controller has been designed for synchronization of chaotic fractional-order systems. This controller is a fractional PID controller, which the coefficients will be tuned according to a proper adaptation mechanism. PID coefficients are updated using the gradient method when a proper sliding surface is chosen. To illustrate the effectiveness and performance of the controller, the proposed controller implements on a pair of topologically inequivalent chaotic fractional-order systems. The Genesio-Tessi and Coullet systems. Performance of fractional-order adaptive PID controller (PαIλDμ) on the basis of speed of synchronization, error of synchronization, and level of control signal, is compared with the conventional ones (adaptive PID controller) and sliding mod controller (SMC). The simulation results reducing the level of control signal indicate the significance of the proposed controller.



Edited by:

Yongping Zhang, Linhua Zhou and Elwin Mao






A. Fayazi "Synchronization of Chaotic Fractional-Order Systems via Fractional-Order Adaptive Controller", Applied Mechanics and Materials, Vol. 109, pp. 333-339, 2012

Online since:

October 2011





[1] T.T. Hartley, C.F. Lorenzo, and H.K. Qammer, Chaos in a fractional order Chua's system, IEEE Trans. CAS-I, 42 (1995) 485–490.

DOI: 10.1109/81.404062

[2] P. Arena, R. Caponetto, L. Fortuna, D. Porto, Chaos in a fractional order Duffing system, In: Proceedings ECCTD, Budapest, (1997) 1259–1262.

[3] W.M. Ahmad, J.C. Sprott, Chaos in fractional-order autonomous nonlinear systems, Chaos & Solitons Fractals, 16 (2003) 339-351.

DOI: 10.1016/s0960-0779(02)00438-1

[4] J.G. Lu, G. Chen, A note on the fractional-order Chen system, Chaos& Solitons Fractals, 27 (2006) 685–688.

DOI: 10.1016/j.chaos.2005.04.037

[5] J.G. Lu, Chaotic dynamics of the fractional-order Lü system and its synchronization, Phys. Lett. A, 354 (2006) 305–311.

[6] C. Li, G. Chen, Chaos and hyperchaos in the fractional-order Rössler equations, Phys. A: Stat. Mech. Appl, 341 (2004) 55–61.

[7] J.G. Lu, Chaotic dynamics and synchronization of fractional-order Arneodo's systems, Chaos Solitons & Fractals, 26 (2005) 1125–1133.

DOI: 10.1016/j.chaos.2005.02.023

[8] L.J. Sheu, H.K. Chen, J.H. Chen, L.M. Tam, W.C. Chen, K.T. Lin, Y. Kang, Chaos in the Newton-Leipnik system with fractionalorder, Chaos, Solitons & Fractals, 36 (2008) 98-103.

DOI: 10.1016/j.chaos.2006.06.013

[9] E. Ott, C. Grebogi, J. York, Controlling Chaos, Phys. Rev. Lett, 64 (1990) 1196-1204.

[10] L. M Pecora, T. L Carroll, Synchronization in chaotic systems, Phys. Rev. Lett, 64 (1990) 821-824.

DOI: 10.1103/physrevlett.64.821

[11] C. C Hwang, J. Y Hsieh, R. S Lin, A linear continuous feedback control of Chua's circuit, Chaos Soliton & Fract, 8 (1997) 1507-1521.

[12] J. H Lü, Controlling uncertain Lü system using linear feedback, Chaos Soliton & Fract, 17 (2003) 127-159.

DOI: 10.1016/s0960-0779(02)00456-3

[13] Y. Wang, Z.H. Guan, H.O. Wang, Feedback and adaptive control for the synchronization of Chen system via a single variable, Phys. Lett. A, 321 (2003) 34-40.

[14] J. H Park, O.M. Kwon, A novel criterion for delayed feedback control of time-delay chaotic systems, Chaos, Solitons & Fractals, 23 (2005) 495-501.

DOI: 10.1016/j.chaos.2004.05.023

[15] X Wu, J Lu, Parameter identification and backstepping control of uncertain Lü system, Chaos Soliton & Fract, 18 (2003) 721-729.

DOI: 10.1016/s0960-0779(02)00659-8

[16] L.O. Chua, M. Itah, L. Kosarev, K. Eckert, Chaos synchronization in Chua's circuits, Circuit Syst. Comput, 3 (1993) 93-108.

[17] D. Li, J.A. Lu, X. Wu, Linearly coupled synchronization of the unified chaotic systems and the Lorenz systems, Chaos Soliton & Fract, 23 (2005) 79-85.

DOI: 10.1016/j.chaos.2004.03.027

[18] J.H. Park, Stability criterion for synchronization of linearly coupled unified chaotic systems, Chaos Soliton & Fract, 23 (2005) 1319-1325.

DOI: 10.1016/s0960-0779(04)00383-2

[19] R. Genesio R and A. Tesi, Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems, Automatica, 28 (1992) 531-548.

DOI: 10.1016/0005-1098(92)90177-h

[20] A. Arnéodo, P. Coullet, C. Tresser, Possible new strange attractors with spiral structure, Communication in Mathematical Physics, 79 (1981) 4, 573-579.

DOI: 10.1007/bf01209312

[21] M.S. Tavazoei, M. Haeri, Determination of active sliding mode controller parameters in synchronizing different chaotic systems, Chaos, Solitons & Fractals, 32 (2007) 583-591.

DOI: 10.1016/j.chaos.2005.10.103

[22] N.M.F. Ferreira, J.A.T. Machado, Fractional-order hybrid control of robotic manipulators, In Proceedings ICAR, Coimbra, Portugal, (2003) 393-398.

[23] A. Calderón, B. Vinagre, V. Feliu, Fractional order control strategies for power electronic buck converters, Signal Processing, 86 (2006) 2803-2819.

DOI: 10.1016/j.sigpro.2006.02.022

[24] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, San Fransisco, (1993).

[25] I. Podlubny, Fractional Differential Equations, Academic Press, New York, (1999).

[26] W.D. Chang, J. J Yan, Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems, Chaos, Solitons & Fractals, 26 (2005) 167-175.

DOI: 10.1016/j.chaos.2004.12.013

In order to see related information, you need to Login.