Preparation of Amorphous Silicon Oxide Nanowires by the Thermal Heating of Ni or Au-Coated Si Substrates


Article Preview

Silicon oxide (SiOx) nanowires may have many applications due to their electrical, mechanical and optical properties. Many methods have been reported for the synthesis of SiOx nanowires, including laser ablation, sol–gel, thermal evaporation, carbothermal reduction, physical evaporation, rapid thermal annealing, chemical vapor deposition and thermal oxidation route, oxide assisted growth and thermal sublimation. In this paper, we reported SiOx nanowires fabricated by simple thermal heating process of catalyst thin film-coated Si substrates with various parameters, such as synthesis temperature, synthesis gases, catalysts, and buffer layer (SiO2 layer). Synthesized silicon oxide nanowires were amorphous crystalline. The best synthesis condition of prepared SiOx nanowire is slightly varied with catalysts and buffer layer. The flow rate of synthesis gas affected diameter of silicon oxide nanowires.



Edited by:

Wu Fan




J. K. Ha and K. K. Cho, "Preparation of Amorphous Silicon Oxide Nanowires by the Thermal Heating of Ni or Au-Coated Si Substrates", Applied Mechanics and Materials, Vols. 110-116, pp. 1087-1093, 2012

Online since:

October 2011





[1] S. Iijima, Nature 354 (7) (1991) 56.

[2] R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4 (5) (1964) 89.

[3] N. Wang, Y. Cai, R.Q. Zhang, Mater. Sci. Eng. R 60 (2008) 1.

[4] Y.N. Zia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, H.Q. Yan, Adv. Mater. 15 (15) (2003) 353.

[5] Y.Q. Zhu, W.B. Hu, W.K. Hsu, M. Terrones, N. Grobert, J. P Hare, H.W. Kroto, D.R.M. Walton, H. Terrones, J. Mater. Chem. 9 (12) (1999) 3173.


[6] A.H. Heuer, D.J. Fink, V.J. Laraia, J.L. Arias, P.D. Calvert, K. Kendall G.L. Messing, J. Blackwell, P.C. Rieke, D.H. Thompson, A.P. Wheeler, A. Vcis, A.I. Caplan, Science 255 (5048) (1992) 1098.


[7] E.I. Givargizov, > Cryst. Growth 31 (1975) 20.

[8] T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, W.E. Buhro, Science 270 (5243) (1995) 1791.

[9] J. Sun, J.Q. Li, X.W. Du, Y.W. Lu, X. Han, Mater. Lett. 61 (2007) 3783.

[10] K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, H. Kakibayashi, J. Appl. Phys. 77 (2) (1995) 447.

[11] Hyoun Woo Kim, Seung Hyun Shim, Jong Woo Lee, Physica E 37 (2007) 163.

[12] Boshi Zhuo, Yuguo Li, Ziaokai Zhang, Aichun Yang, Mater. Sci. Eng. B 172 (2010) 15.

[13] Hyun-Kyu Park, Beelyong Yang, Sang-Woo Kim, Gil-Ho Kim, Doo-Hyeb Youn, Sang-Hyeob Kim, Sung-Lyul Maeng, Physica E 37 (2007) 158.


[14] Ki-Hong Lee, Hyuck Soo Yang, Kwang Hyeon Baik, Jungsik Gang, Richard R. Vanfleet, Wolfgang Sigmund, Chem. Phys. Lett. 383 (2004) 380.


[15] H.F. Yan, Y.J. Xing, Q.L. Hang, D.P. Yu, Y.P. Wang, J. Xu, Z.H. Xi, S.Q. Feng, Chem. Phys. Lett. 323 (2000) 224.

[16] D.P. Yu, Y.J. Xing, Q. L Hang, H.F. Yan, J. Xu, Z.H. Xi, S.Q. Feng, Physica E 9 (2001) 305.

[17] Nae-Man Park, Hyun-Kyu Park, Chel-Jong Choi, Sang-Woo Kim, Sunglyul Maeng, Physica E 40 (2008) 3170.