The Variations of Cu/Ga Ratio on the Structural and Optical Properties of Cu(In, Ga)Se2 Thin Films by Co-Evaporation Technology

Abstract:

Article Preview

The result of an extensive research on this material is the achievement of approaching 20% efficiency by the co-evaporation of copper, indium, gallium and selenium elements. Recently, photoluminescence (PL) spectra have been studied on Cu (In,Ga) Se2 (CIGS) thin films and CIGS solar cells, to clarify the carrier recombination process. The CIGS layers were grown on the Mo-coated soda-lime glass substrate by the three stage process and four sources co-evaporation of constituent elements onto a heated substrate. It has found that the structural and optical properties of the CIGS thin film was influenced by the Cu/Ga ratio (RCu/Ga) of the CIGS thin film compositional variation. The X-ray diffraction and PL spectra were used to characterize the structure property and carrier recombination mechanism of CIGS thin film.

Info:

Periodical:

Edited by:

Wu Fan

Pages:

1187-1190

DOI:

10.4028/www.scientific.net/AMM.110-116.1187

Citation:

H. I. Chen et al., "The Variations of Cu/Ga Ratio on the Structural and Optical Properties of Cu(In, Ga)Se2 Thin Films by Co-Evaporation Technology", Applied Mechanics and Materials, Vols. 110-116, pp. 1187-1190, 2012

Online since:

October 2011

Export:

Price:

$35.00

[1] M. A. Green, K. Emery, D. L. King, S. Igary and W. Warta: Prog. Photovolt. Res. Appl. Vol. 11 (2003), p.347.

[2] R. N. Bhattacharya, M. A. Contreras, B. Egaas, R. N. Noufi, A. Kanevce and R. Sites: Appl. Phys. Lett. Vol. 89 (2006), p.253503.

[3] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi: Prog. Photovolt. Res. Appl. Vol. 16 (2008) 235.

DOI: 10.1002/pip.822

[4] J. E. Jaffe and A. Zunger: Phys. Rev. B Vol. 29 (1984), p.1882.

[5] M. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B. Egaas, and R. Noufi: Prog. Photovoltaics Vol. 13 (2005), p.209.

[6] F. Mesa, C. Calderón and G. Gordillo: Thin Solid Films Vol. 518 (2010), p.1764.

[7] M. A. Contreras, J. R. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, J. Scofield and R. Noufi: Conference Record of the 24th IEEE Photovoltaics Specialists Conference, (1994), p.68.

DOI: 10.1109/wcpec.1994.519811

[8] A. Virtuani, E. Lotter and M. Powallia: J. Appl. Phys. Vol. 99 (2006), p.014906.

[9] M. Venkatachalam, M.D. Kannan, S. Jayakumar, R. Balasundaraprabhu, and N. Muthukumarasamy: Thin Solid Films Vol. 516 (2008), p.6848.

DOI: 10.1016/j.tsf.2007.12.127

[10] G. W. El Haj Mousa, M. Ajaka, M. El Tahchi, E. Eid and C. Llenares: Phys. Stat. Sol. Vol. 202 (2005), p.469.

[11] N. Rega, S. Siebentritt, J. Albert, S. Nishiwaki, A. Zajogin, M. Ch. Lux-Steiner, R. Kniese and M. J. Romero: Thin Solid Films Vol. 480-481 (2005), p.286.

DOI: 10.1016/j.tsf.2004.11.079

[12] S. H. Wei, S. B. Zhang and A. Zunger: Appl. Phys. Lett. Vol. 72 (1998), p.3199.

[13] S. B. Zhang, S. H. Wei, and A. Zunger: Phys. Rev. B Vol. 57 (1998), p.9642.

[14] J. H. Schön, V. Alberts and E. Bucher: J. Appl. Phys. Vol. 81 (1997), p.2799.

[15] S. Zott, K. Leo, M. Ruckh and H. W. Schock: Appl. Phys. Lett. Vol. 68 (1996), p.1144.

[16] I. Dirnstorfer, D. M. Hofmann, D. Meister, B. K. Meyer,W. Riedl and F. Karg: J. Appl. Phys. Vol. 85 (2006), p.1423.

[17] M. E. Calixio, R. N. Bhattacharya, P. J. Sebastian, A. M. Fernandez, S. A. Gamhua and R. N. Noufi: Sol. Energy Mater. Sol. Cells Vol. 55 (1998), p.23.

In order to see related information, you need to Login.