Study on the Thermal Characteristics of Heat Pipes with Water-Based MWCNT Nanofluids

Abstract:

Article Preview

In this paper, thermal characteristics of miniature heat pipes with grooved wick and water-based multiwalled carbon nanotubes(MWCNT) nanofluids(0.1, 0.2, and 0.5 vol.%) as working fluids are experimentally investigated. The thermal conductivity and thermal resistances are measured and compared with those of DI water. The thermal conductivity of water-based MWCNT nandfluids is enhanced by up to 29% compared with that of DI water. Experiments are performed under the same evaporation temperature condition. The thermal resistance of heat pipe is reduced from 30% to 35.2% as the volume fraction of nanoparticles inceasing from 0.1% to 0.5%. Finally, based on the experimental results, we present the reduction of the thermal resistances of the heat pipes compared with conventional heat pipes cannot be explained by only the thermal conductivity of water-based MWCNT nanofluids.

Info:

Periodical:

Edited by:

Wu Fan

Pages:

1879-1885

DOI:

10.4028/www.scientific.net/AMM.110-116.1879

Citation:

H. J. Ha et al., "Study on the Thermal Characteristics of Heat Pipes with Water-Based MWCNT Nanofluids", Applied Mechanics and Materials, Vols. 110-116, pp. 1879-1885, 2012

Online since:

October 2011

Export:

Price:

$35.00

[1] Faghri, Heat Pipe Science and Technology, Taylor & Francis, (1995).

[2] S. P. Jang, S. J. Kim, and K. Y. Paik, Experimental Investigation of Thermal Characteristics for a Microchannel Heat Sink Subject to an Impinging Jet, Using a Micro-thermal Sensor Array, Sensors and Actuators A: Physical, vol. 105, 2003, p.211.

DOI: 10.1016/s0924-4247(03)00103-1

[3] S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME J. Heat Transfer, vol. 121, 1999, p.280~289.

DOI: 10.1115/1.2825978

[4] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, Anomalous increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett, vol. 78, 2001, p.718~720.

DOI: 10.1063/1.1341218

[5] S. U. S. Choi, Z. G. Zhang., and W. Yu, F. E. Lockwood, and E. A. Grulke, Anomalous thermal conductivity enhance ment in nanotube suspensions, Appl. Phys. Lett., vol. 79, 2001, p.2252~2254.

DOI: 10.1063/1.1408272

[6] X.Q. Wang, and A. S. Mujumdar, Heat transfer characteristics of nanofluids: a review, int. J. Therm. Sci., vol. 46, Issue 1, 2007, p.1~19.

[7] S. M. You, J. H. Kim, and K. H. Kim, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Appl. Phys. Lett., vol. 83, 2003, p.3374~3376.

DOI: 10.1063/1.1619206

[8] C. Pak, and Y. I. Cho, Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particle, Experimental Heat Transfer, vol. 11, 1998, p.151~170.

DOI: 10.1080/08916159808946559

[9] Y. Yang, Z. G. Zhang, E. A. Grulke, W. B. Anderson, and G. Wu, Heat Transfer Properties of Nanoparticle-in-fluid Dispersions (nanofluids) in Laminar Flow, Int. J. Heat Mass Transfer, vol. 48, 2005, p.1107~1116.

DOI: 10.1016/j.ijheatmasstransfer.2004.09.038

[10] C. Y. Tsai, H. T. Chien, P. P. Ding, B. Chan, T. Y. Luh, and P. H. Chen, Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance, Mat. Lett., vol. 58, 2004, p.1461~1465.

DOI: 10.1016/j.matlet.2003.10.009

[11] H. B. Ma, C. Wilson, B. Borgmeyer, K. Park, Q. Yu, S.U.S. Choi, and M. Tirumala, Effect of nanofluid on the heat transport capability in an oscillating heat pipe, Appl. Phys. Lett., vol. 88, 2006, 143116.

DOI: 10.1063/1.2192971

[12] S. W. Kang, W. C. Wei, S. H. Tsai, and S. Y. Yang, Experimental investigation of silver nano-fluid on heat pipe thermal performance, Appl. Therm. Eng., vol. 26, 2006, p.2377~2382.

DOI: 10.1016/j.applthermaleng.2006.02.020

[13] Y. H. Lin, S. W. Kang, and H. L. Chen, Effect of Silver Nano-fluid on Pulsating Heat Pipe Thermal Performance, Appl. Therm. Eng., vol 28, 2008, 1312-1317.

DOI: 10.1016/j.applthermaleng.2007.10.019

[14] X. F. Yang, Z. H. Liu, and J. Zhao, Heat Transfer Performance of a Horizontal Micro-grooved Heat Pipe Using CuO Nanofluids, J. Micromech. Microeng, vol. 18, 2008, 035038.

DOI: 10.1088/0960-1317/18/3/035038

[15] K. H. Do, S. P. Jang, Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick, Int. J. Heat Mass Transfer, vol. 53, 2010, pp.2183-2192.

DOI: 10.1016/j.ijheatmasstransfer.2009.12.020

[16] K. H. Do, H. J. Ha, and S. P. Jang, Thermal resistance of screen mesh wick heat pipes using the water-based Al2O3 nanofluids, Int. J. Heat Mass Transfer, vol. 53, 2010, pp.5888-5894.

DOI: 10.1016/j.ijheatmasstransfer.2010.07.050

[17] Z. H. Liu, and L. Lu, Thermal Performance of an Axially Microgrooved Heat Pipe Using Carbon Nanotube Suspensions, J. Thermophys. Heat Transfer, vol. 23, 2009, pp.170-175.

DOI: 10.2514/1.38190

[18] J. H. Lee, K. S. Hwang, S. P. Jang, B. H. Lee, J. H. Kim, S. U. S. Choi, C. J. Choi, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 Nanoparticles, Int. J. Heat Mass Transfer, vol. 51, 2008, pp.2651-2656.

DOI: 10.1016/j.ijheatmasstransfer.2007.10.026

[19] R. H. Müller, Zetapotential und Partikelladung in der Laborpraxis, 1st Ed., Stuttgart: Wissenschaftliche Verlagsgesellschaft, (1996).

[20] S. W. Chi, Heat Pipe Theory and Practice a Sourcebook, McGraw-Hill, New York, 1976, pp.197-210.

In order to see related information, you need to Login.