Facile Enrichment and Photocatalytical Degradation of Low Concentration MB in Aqueous Solution


Article Preview

Fine particles of photoactive anatase-type TiO2, prepared by hydrolysis of tetrabutyl orthotitanate and crystallized under microwave (MV) irradiation, were loaded on adsorbent support attapulgite (ATP). The prepared hybrids TiO2-ATP were characterized with transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and X-ray diffraction (XRD) and photoactivity properties were evaluated separately. The substrates of target were adsorbed on the adsorbent support, and then a high concentration environments of the substrate was formed around the loaded TiO2, resulting in an increase in the photodestruction rate. One of the most interesting features of the resulting catalysts with low titania contain (<30%) is their fast decantability in comparison with that of TiO2. This way one of the most important drawbacks of photocatalysis, the catalysts separation from the solution, was overcome by simple sedimentation and decantation. The low concentrations MB may be removed through enrichment and photodegradation using the prepared TiO2-ATP photocatalyst.



Edited by:

Wu Fan




L. X. Zhang and X. L. Wang, "Facile Enrichment and Photocatalytical Degradation of Low Concentration MB in Aqueous Solution", Applied Mechanics and Materials, Vols. 110-116, pp. 2308-2315, 2012

Online since:

October 2011




[1] M. R. Hoffmann, S. T. Martin, W. Choi, D.W. Bahnmann, Chem. Rev., 95(1995) 69-96.

[2] H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J. M. Herrmann, Appl. Catal. B: Environ., 39 (2002) 75-90.

[3] A. H. C. Chan, J. F. Porter,J. P. Barford, C. K. Chan, Water Sci. Technol., 44(2001) 187-195.

[4] U. Stafford, K. A. Gray, P. V. Kamat, Heterogen, Chem. Rev. 3 (1996) 77.

[5] B. J. Aronson, C. F. Blandford, A. Stein, Chem. Mater., 9 (1997) 2842-2851.

[6] N. Takeda, M. Ohtani, T. Torimoto, S. Kuwabata, H. Yoneeyama, J. Phys. Chem. B, 101 (1997) 2644-2649.

[7] T. Torimoto, S. Ito, S. Kuwabata, H. Yoneyama, Environ. Sci. Tech., 30 (1996) 1275-1281.

[8] Z. Ding, X. Y. Hu, P. L. Yue, Q. W. Gao, P. F. Greenfield, Catal. Today, 68 (2001) 173-182.

[9] J. Chen, L. Eberlein, C.H. Langford, J. Photochem. Photobiol. A Chem., 148 (2002) 183-189.

[10] M. Hirano, C. Nakahara, K. Ota, M. Inagaki, J. Am. Ceram. Soc., 85 (2002) 1333-1335.

[11] C. Ooka, H. Yoshida, K. Suzuk, T. Hattori, Appl. Catal. A Gen., 260 (2004) 47-53.

[12] C. Ooka, H. Yoshida, M. Horio, K. Suzuk, T. Hattori, Appl. Catal. B Environ., 41 (2003) 313-321.

[13] Z. H. Huang, D. P. Xu, F. Y. Kang, J. M. Hao, New Carbon Mater., 19 (2004) 229-238.

[14] S. H. Yan, Clay Miner. Beijing Publisher, Beijing China, (1981).

[15] E. H. Cao, R. Bryant, D. J. A. Williams. J. Colloid Interface Sci., 179 (1996) 143-150.

[16] A. M. Peiro, J. Peral, C. Domingo, X. Domenech, J. A. Allyon, Chem. Mater., 13 (2001) 2567-2573.

[17] L. Saadoun, J. A. Ayllon, J. J. Becerril, J. Peral, X. Domenech, R. R. Clemente, Mater. Res. Bull. 35 (2000) 193.

[18] S. Yin, Y. Inoue, S. Uchida, Y. Fujishiro, T. Sato, J. Mater. Res., 13 (1998) 844-847.

[19] S. Motojima, T. Suzuki, Y. Noda, A. Hiraga, S. Yang, X. Chen, H. Iwanaga, T. Hashishin, Y. Hishikawa, J. Mater. Sci., 39 (2004) 2663-2674.