Dynamic Analysis of the Bioprosthetic Heart Valve on Different Fixation


Article Preview

This paper constructs the bioprosthetic valve leaflets’ parametric model via computer aided design, a series of accurate parameters of the bioproshtetic heart valve, such as such as radius of the sutural ring, height of the supporting stent and inclination of the supporting stent, are determined. Numerical simulation is used to determine the effect of different shape designs and attachment edge fixed ways on the mechanical performance of the bioprosthetic valve leaflet. The dynamic behavior of the valve during diastolic phase is analyzed. The finite element analysis results show that the stress distribution of the ellipsoidal leaflet valve is comparatively reasonable. The ellipsoidal leaflet valve has the following advantages over the cylindrical leaflet valve, lower peak von Mises-stress, smaller stress concentration area, and relatively uniform stress distribution. The different ways of the attachment edge fixed also have a significant effect on the dynamic behavior of the valve. Attachment edge with some degrees of rotation when seamed to the stent can act to reduce the pressure and make the stress distribution reasonable. Reasonable attachment edge fixation may contribute to the long term durability of the valve. This indicates the need to account for the attachment edge seamed way, when manufacturing the bioproshetic heart valve with long term durability. This work is very helpful to manufacture valvular leaflets with reasonable shapes and to prolong the lifetime of the bioprosthetic heart valve.



Edited by:

Wu Fan






X. Ye et al., "Dynamic Analysis of the Bioprosthetic Heart Valve on Different Fixation", Applied Mechanics and Materials, Vols. 110-116, pp. 2342-2347, 2012

Online since:

October 2011




In order to see related information, you need to Login.

In order to see related information, you need to Login.