Interpretive Structural Modeling (ISM) of Bolted Joint Subjected to Dynamic Loosening under Soft Foot Condition

Abstract:

Article Preview

— In this paper thirty nine factors responsible for the dynamic loosening, under soft foot condition, of a bolted joint have been enumerated and its Interpretive Structural Modeling (ISM) has been developed. In this systematic approach of ISM, first of all a concept model of the problem has been formulated, followed by the formulations of Structural Self-Interaction Matrix (SSIM) and Reachability Matrix. The level of significance of each factor has been derived by level partitioning. The initial digraph is prepared on the basis of the canonical matrix. ISM based model is finalized after checking for conceptual inconsistency and necessary modifications. The MICMAC analysis is also conducted with the help of driving and dependence diagram, which states that factor 31 (vibration loosening) and 36 (additional stresses in the bolt) are the major threat for joint integrity and needs more attention.

Info:

Periodical:

Edited by:

Wu Fan

Pages:

3047-3053

DOI:

10.4028/www.scientific.net/AMM.110-116.3047

Citation:

S. S. Kadam and S. G. Joshi, "Interpretive Structural Modeling (ISM) of Bolted Joint Subjected to Dynamic Loosening under Soft Foot Condition", Applied Mechanics and Materials, Vols. 110-116, pp. 3047-3053, 2012

Online since:

October 2011

Export:

Price:

$35.00

[1] J. H. Bickford, An Introduction to the Design and Behaviour of Bolted Joints, Marcel and Dekker, New York, (1995).

[2] Ramey G. Ed. and Jenkins R. C., Experimental analysis of thread movement in bolted connections due to vibrations, Research Project NAS8-39131, March (1995).

[3] J. C. Robertson, Stamp Out Soft Foot, MRO Today, February-March (2001).

[4] John Piotrowski, Shaft Alignment Handbook, CRC Press, 3rd ed., (2007).

[5] J. N. Warfield, Societal Systems – Planning Policy and Complexity, John Wiley & Sons Inc., New York, (1976).

[6] S. Kanungo and V. V. Bhatnagar, Beyond Generic Models for Information System Quality: The Use of Interpretive Structural Modeling (ISM), Systems Research and Behavioral Science, vol. 19, p.531–549, August (2002).

DOI: 10.1002/sres.476

[7] R. Bolanos et. al., Using interpretive structural modelling in strategic decision-making groups, Management Decision, Vol. 43, No. 6, pp.877-895, (2005).

DOI: 10.1108/00251740510603619

[8] M. D. Singh and R. Kant, Knowledge management barriers: An interpretive structural modelling approach, International Journal of Mangement Science and Engineering Management, Vol. 3, No. 2, pp.141-150.

[40] [39] [38] [37] [36] [35] [34] [33] [32] [31] [30] [29] [28] [27] [26] [25] [24] [23] [22] [21] [20] [19] [18] [17] [16] [15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [1] V O O O V O O O O X O O O O X O O A A O O O O X O X O O V O V O A O O A O A A.

[2] V O O O V O O O O V O O O O O O O O O O O O O X O O O O O O O O O O O A O O.

[3] V O O O V O O O O O O O O O A O O O A O O O O X O O O O O O O O O O O O O.

[4] V O O O O O O O O V O O O O O O O X O O O O O A O O O O O O O O O O A X.

[5] V O O O V O O O O V O O O O O O O X A O O O O A O O O O O O O O O O V.

[6] V O O O V O O O O V O O O O O V O V A O O O O V O O O O O O O O O O.

[7] V V V V V V V V V V O O O O O O O O V V A O O O O O O X O O O V O.

[8] V O O O V O O O O V O O O O A O O A A O O O O O O V O X A A O O.

[9] V V V V V V V V V V O O O O V O O O V V A V O A X O O A O O O.

[10] V V V O V O O V V V O V A O O O O O O V A O O O O O O X V A.

[11] V O O O O O O O O O O O O O O O O O O O O O O O O O O O O.

[12] V O O O A O O O O O O O O O O O O O O O O O O O O O O A.

[13] V V V V V V V V V V O V V O O O O O O V V V O O V O O.

[14] V O O O V O O O O V O O O O O O O O A O A O O A O V.

[15] V V V V V V V V V V O O O O O O O O O O A O O V O.

[16] V V V V V V V V V V O O O O O O O O A O A O O O.

[17] V V V V V V V V V V O O O O O O O O A O O O O.

[18] V X O O O O O O O V O O O O O O A A A O O O.

[19] V V V V V V V V V V O X O O O O A A X O A.

[20] V V V V V V V V V V O V V O O V O V O V.

[21] V V V V V V V V V V O V O O V O O O X.

[22] V V V V V V V V V V O O O O A O O O.

[23] V V V V O V V V V V O O O O O V O.

[24] V X V V O V V V V V O O O O O O.

[25] V V V V V V V V V V O O O O O.

[26] V O O O V O O O O V O A A A.

[27] V V V O V O O V V V O O O.

[28] V V V O V O O V V V O V.

[29] V V V O V O O V V V O.

[30] V V V O V O O V V V.

[31] V V V O V V O V V.

[32] V V V V A V V A.

[33] V V V V A V V.

[34] O A A A A O.

[35] O V A O V.

[36] V O V O.

[37] A V A.

[38] A V.

[39] A.

[40] TABLE IV. final reachability matrix DRIVING POWER.

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] ↓.

[15] [10] [10] [9] [10] [7] [5] [7] [7] [9] [3] [7] [5] [9] [8] [5] [9] [5] [8] [2] [7] [18] [6] [2] [4] [18] [3] [4] [8] [2] [30] [22] [21] [20] [18] [28] [18] [24] [27] [35] DEPENDENCE.

In order to see related information, you need to Login.