Optoelectronic Properties of Vanadyl phthalocyanine Based Organic-Inorganic Hybrid Devices


Article Preview

The Optoelectronic properties of organic-inorganic hybrid devices consisting of Ag/VOPc/n-Si/Ag structure have been investigated through analyzing the current-voltage characteristics. We have also studied the effect of illumination on the open circuit voltage, capacitance and reverse resistance with consideration of VOPc film thickness. The dark I-V characteristics display rectification behaviour of such hybrid structures and a very high photo-capacitive response under illumination of 200 lx is observed. Furthermore due to the generation of photo induced charges, under illumination, the decrease in reverse bias resistance to one third of its value is observed.



Edited by:

Wu Fan






I. Murtaza et al., "Optoelectronic Properties of Vanadyl phthalocyanine Based Organic-Inorganic Hybrid Devices", Applied Mechanics and Materials, Vols. 110-116, pp. 3255-3260, 2012

Online since:

October 2011




[1] M. Pientka, V. Dyakonov, D. Meissner, A. Rogach, D. Talapin, H. Weller, D. Vanderzande, Photoinduced charge transfer in cxomposites of conjugated polymers and semiconductor nanocrystals, Nanotechnology, vol. 15, 2004, p.163.

DOI: 10.1088/0957-4484/15/1/032

[2] M. Chikamatsu, T. Taima, Y. Yoshida, K. Saito, and K. Yase, Mg-doped C60 thin film as improved n-type organic semiconductor for a solar cell, Appl. Phys. Lett., vol. 82 , 2004, p.127.

DOI: 10.1063/1.1637943

[3] P. Sullivan, S. Heutz, S. M. Schultes, and T. S. Jones, Influence of codeposition on the performance of CuPc-C60 heterojunction photovoltaic devices, Appl. Phys. Lett., vol. 84, 2004, p.1210.

DOI: 10.1063/1.1643549

[4] Z.Y. Xie and L.S. Hung, High-contrast organic light-emitting diodes, Appl. Phys. Lett., vol. 84, 2004, p.1207.

[5] M.M. El-Nahass, K.F. Abd-El-Rahman, A.A.M. Farag, A.A.A. Darwish, Photovoltaic properties of NiPc/p-Si (organic/inorganic) heterojunctions, Org. Electron. , vol. 6 , 2005 , p.129.

DOI: 10.1016/j.orgel.2005.03.007

[6] M.M. El-Nahass, H.M. Zeyada, M.S. Aziz, N.A. El-Ghamaz, Carrier transport mechanisms and photovoltaic properties of Au/p-ZnPc/p-Si solar cell, Solid-State Electron., vol. 49, 2005, p.1314.

DOI: 10.1016/j.sse.2005.06.001

[7] F. Gutman, L.E. Lyons, Organic semiconductors, Part A, Robert E. Krieger Publishing Company, Malabar, Florida (1980).

[8] F. Gutman, H. Keyzer, L.E. Lyons, R.B. Somoano, Organic semiconductors, Part B, Robert E. Krieger Publishing Company, Malabar, Florida (1983).

[9] A.K. Mahapatro, S. Ghosh, Schottky energy barrier and charge transport in metal/ copper-phthalocyanine/metal structures, Appl. Phys. Lett., vol. 80, 2002, p.4840.

DOI: 10.1063/1.1483388

[10] Kh.S. Karimov, Kh.M. Akhmedov, A.A. Dzhuraev, M.N. Khan, S.M. Abrarov, M.I. Fiodorov, Organic-on-inorganic Ag/n-GaAs/p-CuPc/Ag photoelectric sensor, Eurasian Chem. Technol. J., vol. 2, 2000, p.251.

DOI: 10.1063/1.2739822

[11] Kh.S. Karimov, M.M. Ahmed, S.A. Moiz, M.I. Fedorov, Temperature-dependent properties of organic-on-inorganic Ag/p-CuPc/n-GaAs/Ag photoelectric cell, Sol. Energy Mater. Sol. Cells, vol. 87, 2005, p.61.

DOI: 10.1016/j.solmat.2004.07.014

[12] Haibo Wang, De Song, Junliang Yang, Bo Yu, Yanhou Geng and Donghang Yan, High mobility vanadyl-phthalocyanine polycrastalline films for organic field-effect transistors, Appl. Phys. Lett., vol. 90, 2007), p.253510.

DOI: 10.1063/1.2751103

[13] Lijuan Wang, Guojun Liu, Haibo Wang, De Song, Bo Yu, Donghang Yan, Electrical properties in vanadyl-phthalocyanine-based metal-insulator-semiconductor devices, Appl. Phys. Lett., vol. 91, 2007, p.153508.

DOI: 10.1063/1.2798585

[14] H. Tada, T. Kawaguchi, A. Koma, Epitaxial growth of vanadyl-phthalocyanine ultrathin films on hydrogen-terminated Si(111) surfaces,. Appl. Phys. Lett., vol. 61, 1992, p. (2021).

DOI: 10.1063/1.108346

[15] Yong-le Pan, Xiao-dong Liao, Ying-juan Wu, Ling-bing Chen, You-yuan Zhao, Yuan-hua Shen, Fu-ming Li, Shu-yin Shen, De-yin Huang, Steady-state photovoltaic and electroreflective spectra in Al/vanadyl phthalocyanine (VOPc, in phase II)/indium-tin-oxide (ITO) sandwitch cell, Thin Solid Films, vol. 324, 1998, p.209.

DOI: 10.1016/s0040-6090(98)00357-5

[16] M.M. El-Nahass, K.F. Abd-El-Rahman, Investigation of electrical conductivity in Schottky-barrier based on nickel phthalocyanine thin fims, J. Alloys Compd., vol. 430, 2007, p.194.

DOI: 10.1016/j.jallcom.2006.04.056

[17] D.A. Neamen, Semiconductor Physics and Devices, Richard D. Irwin, Inc., USA, 1992.

[18] M. Gratzel, Photoelectrochemical cells, Nature, vol. 414, 2001, p.338.

[19] K. Karimov, K. Akhmedov, I. Qazi, T. Ahmed Khan, Poly-N-epoxypropylcarbozole comlexes photocapacitive detectors, J. Optoelectron. Adv. Mater., vol. 9, 2007, p.2867.

[20] K.S. Karimov, I. Qazi, T.A. Khan, P.H. Draper, F.A. Khalid, M. Mahroof-Tahir, Humidity and illumination organic semiconductor copper phthalocyanine sensor for environmental monitoring, Environ. Monit. Assess., vol. 141, 2008, p.323.

DOI: 10.1007/s10661-007-9898-5

In order to see related information, you need to Login.