Unsteady Flow past a Combined Pitching and Plunging Aerofoil Using an Implicit RANS Solver

Abstract:

Article Preview

Unsteady Reynolds-averaged Navier-Stokes (RANS) computations are presented for low Mach number flow past a combined pitching and plunging NACA 0012 aerofoil. The Implicit RANS solver used for obtaining time-accurate solutions is based on a finite volume nodal point spatial discretization scheme with dual time stepping. The aim is to validate the unsteady solver for flapping motion of the aerofoil. Results are presented in the form of aerodynamic coefficients and compared with available literature, thus demonstrating the capability of the solver to provide useful unsteady input data for aeroelastic and aeroacoustic analysis.

Info:

Periodical:

Edited by:

Wu Fan

Pages:

3481-3488

DOI:

10.4028/www.scientific.net/AMM.110-116.3481

Citation:

K. S. Kumar and S. V. Sajjan, "Unsteady Flow past a Combined Pitching and Plunging Aerofoil Using an Implicit RANS Solver", Applied Mechanics and Materials, Vols. 110-116, pp. 3481-3488, 2012

Online since:

October 2011

Export:

Price:

$35.00

[1] D. G. Mabey, 1999. Unsteady Aero-dynamics: Restrospect and prospect, Aero-nautical Journal, Vol. 103, No. 1019, Review Paper No. 003, 1 - 18.

[2] W. J. McCroskey, 1982. Unsteady airfoils, Ann. Rev. Fluid Mech., Vol. 14, 285 - 311.

[3] W. J. McCroskey, 1988. Some Rotorcraft Applications of Computational Fluid Dynamics, NASA TM 100066.

[4] W. Shyy, M. Berg and D. Lyungvist, 1999. Flapping and Flexible Wings for Biological and Micro Air Vehicles, Progress in Aerospace Sciences, Vol. 35, No. 5, pp.455-505.

DOI: 10.1016/s0376-0421(98)00016-5

[5] T. J. Mueller(ed. ), 2001. Fixed and Flapping Wing Aerodynamics for Micro Air Vehicles, Progress in Aeronautics and Astronautics, AIAA, Reston, VA, Vol. 195.

[6] S. Yang, S. Luo and F. Liu, 2006. Optimization of Unstalled Pitching and Plunging Motion of an Airfoil, AIAA paper, submitted to 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1055.

DOI: 10.2514/6.2006-1055

[7] T. Theodorsen, 1934. General theory of aerodynamic instability and the mechanism of flutter, NACA REPORT No. 496.

[8] I. E. Garrick, 1936. Propulsion of a flapping and oscillating airfoil, NACA Report No. 567.

[9] I. H. Tuncer and M. F. Platzer, 2000. Computational study of flapping airfoil Aerodynamics, Journal of Aircraft, Vol. 37, pp.514-520.

DOI: 10.2514/2.2628

[10] K. Isogai, Y. Shinmoto and Y Watanabe, 1999. Effects of Dynamic Stall on Propulsive Efficiency and Thrust of Flapping Airfoil, AIAA Journal, Vol. 37, pp.1145-1151.

DOI: 10.2514/2.589

[11] Ramamurti, R. and Sandberg, W., 2001. Simulation of Flow about Flapping Airfoils using Finite Element Incompressible Flow Solver, AIAA Journal, Vol. 39, pp.253-260.

DOI: 10.2514/3.14725

[12] J. M. Anderson, K. Streitlien, D. S. Barrett and M. S. Triantafyllou, 1998. Oscillating foils of high propulsive efficiency, J. Fluid Mech., 360, pp.41-72.

DOI: 10.1017/s0022112097008392

[13] R. M. Beam and R. F. Warming, 1978. An Implicit Factored Scheme for the Compressible Navier-Stokes Equations, AIAA Journal, Vol. 16, No. 4, pp.393-402.

DOI: 10.2514/3.60901

[14] M. G. Hall, 1985. Cell Vertex Multi-grid Scheme for Solution of the Euler Equations RAE-TM-Aero 2029, Proc. Conf. on Numerical methods for fluid dynamics, pp.303-345.

[15] A. Jameson, W. Schmidt and E. Turkel, 1981. Numerical Solution of Euler Equations by Finite Volume Methods Using Runge Kutta Time Stepping Schemes, AIAA Paper 81 – 1259.

DOI: 10.2514/6.1981-1259

[16] Sharanappa V. Sajjan, Vimala Dutta and P. K. Dutta 2008. Numerical Simulation of flow over pitching bodies using an implicit Reynolds-averaged Navier-Stokes solver, Proc. of 12th Asian congress of Fluid Mechanics, Daejeon, Korea.

[17] Vimala Dutta, Sharanappa and P. K. Dutta, 2005. Navier-Stokes Computations for a Helicopter Rotor Blade in Hover, Proc. Eighth Annual CFD Symposium, CFD Division of Aeronautical Society of India, Bangalore, CP 18.

[18] Sharanappa V. Sajjan, Vimala Dutta, and P. K. Dutta, 2006. Viscous Unsteady Flow around a Helicopter Rotor Blade in Forward Flight. Proc. 9th Annual CFD symposium, CFD Division of Aeronautical Society of India, Bangalore.

[19] P. K. Dutta, Vimala Dutta, and Sharanappa V. Sajjan., 2007. RANS Computation of Flow past Wind Turbine Blades. Proc. of 7th Asian Computational Fluid Dynamics Conference, Bangalore (Invited Paper). Fig. 4(a). The variation of lift and moment coefficients with heave distance for NACA 0012 aerofoil at 0o mean angle of attack Fig. 4(b). The variation of lift and moment coefficients with heave distance for NACA 0012 aerofoil at 6o mean angle of attack Fig. 5(a). The variation of thrust coefficient with heave distance for NACA 0012 aerofoil at 0o mean angle of attack Fig. 5(b). The variation of thrust coefficient with heave distance for NACA 0012 aerofoil at 6o mean angle of attack.

DOI: 10.2514/6.1989-3375

In order to see related information, you need to Login.