Recent Advances in Ultraprecision Diamond Turning of Non-Rotationally Symmetric Optical Surfaces

Abstract:

Article Preview

Firstly, the superior performance and industrial application prospects of non-rotationally symmetric (NRS) optical surfaces are detailed. Secondly, those high precision machining processes to generate NRS optical surfaces are overviewed, it’s been stressed that fast tool servo (FTS) based diamond turning has been the most promising, cost-effective, and high precision machining process to generate NRS surfaces. Finally, the recent research progress in FTS based diamond turning of NRS optical surfaces is remarked, both the tool trajectory generation and the FTS actuation techniques are discussed, the limitations of the existing researches are disclosed, and then the academic and technological researches to be urgently carried out are suggested.

Info:

Periodical:

Edited by:

Wu Fan

Pages:

3600-3607

DOI:

10.4028/www.scientific.net/AMM.110-116.3600

Citation:

M. C. Liu et al., "Recent Advances in Ultraprecision Diamond Turning of Non-Rotationally Symmetric Optical Surfaces", Applied Mechanics and Materials, Vols. 110-116, pp. 3600-3607, 2012

Online since:

October 2011

Export:

Price:

$38.00

[1] K. Garrard, T. Bruegge, J. Hoffman, T. Dow, A. Sohn, Design tools for freeform optics, SPIE Proceedings, vol. 5874, 2005, p.95 – 105, doi: 10. 1117/12. 617680.

[2] S. J. Ludwick, A rotary fast tool servo for diamond turning of asymmetric optics, MIT, Ph.D. dissertation, (1999).

[3] C. Menchaca, and D. Malacara, Toroidal and spherocylindrical surfaces, Applied Optics, vol. 25/18, 1986, p.3008 – 3009, doi: 10. 1364/AO. 25. 003008.

DOI: 10.1364/ao.25.003008

[4] R. S. Winsor, R. G. Ohl, J. A. Connelly, and J. W. MacKenty, Optical Design of an Infrared Multi-Object Spectrometer Utilizing a Free-Form Optical Surface, Proc. of the ASPE 2004 Winter Topical Meeting, Feb. (2004).

[5] M. C. Gerchman, Description of off-axis conic surfaces for non-axisymmetric surface generation, SPIE Proceedings, vol. 1266, March 1990, p.262 – 268, doi: 10. 1117/12. 20277.

[6] O. Cakmakci, B. Moore, H. Foroosh, and J. P. Rolland, Optimal local shape description for rotationally non-symmetric optical surface design and analysis, Optics Express, vol. 16/3, 2008, p.1583 – 1589, doi: 10. 1364/OE. 16. 001583.

DOI: 10.1364/oe.16.001583

[7] N. G. Wanna, Design of reflective optical systems, " Master, s degree thesis, North Carolina State University, Raleigh, (2006).

[8] J. E. Stacy, Asymmetric spline surfaces: characteristics and applications, Applied Optics, vol. 23/16, 1984, p.2710 – 2714. doi: 10. 1364/AO. 23. 002710.

DOI: 10.1364/ao.23.002710

[9] F. Z. Fang, X. D. Zhang, and X. T. Hu, Cylindrical coordinate machining of optical freeform surfaces, Optics Express, vol. 16/10, May 2008, p.7323 – 7329. doi: 10. 1364/OE. 16. 007323.

DOI: 10.1364/oe.16.007323

[10] C. Brecher, S. Lange, M. Merz, F. Niehaus, C. Wenzel, M. Winterschladen and M. Weck, NURBS Based Ultra-Precision Free-Form Machining, CIRP Annals, vol. 55/1, 2006, p.547 – 550. doi: 10. 1016/S0007-8506(07)60479-X.

DOI: 10.1016/s0007-8506(07)60479-x

[11] W. T. Plummer, Free-form optical components in some early commercial products, Proc. of the ASPE 2004 Winter Topical Meeting, Feb. 2004, p.68 – 71.

[12] M. D. Heinrich, C. Wildsmith, Need for precision engineering in astigmatic contact lenses, Proc. of the ASPE 2004 Winter Topical Meeting, Feb. 2004, p.18 – 22.

[13] M. Kobayashi, K. Fujita, T. Kaneko, et al., Second–harmonic-generation microscope with a microlens array scanner, Optics Letters, 2002, vol. 27/15, p.1324 – 1326, doi: 10. 1364/OL. 27. 001324.

DOI: 10.1364/ol.27.001324

[14] Y. Ding, X. Liu, Z. Zheng, and P. Gu, Freeform LED lens for uniform illumination, Optics Express, vol. 16/17, 2008, p.12958 – 12966, doi: 10. 1364/OE. 16. 012958.

DOI: 10.1364/oe.16.012958

[15] T. A. Dow, LAT - Live Axis Turning, NSF Award Abstract #0556209, March 27, (2006).

[16] Y. Tohme, Machining of freeform optical surfaces by slow slide servo, Proc. of the ASPE 18th Annual Meeting, (2003).

[17] N. P. Buescher, Live-axis turning, " Master, s degree thesis, North Carolina State University, Raleigh, (2005).

[18] T. A. Dow, M. H. Miller, and P.J. Falter. Application of a fast tool servo for diamond turning of nonrotationally symmetric surfaces, Precision Engineering, vol. 13/4, Oct. 1991, p.243 – 250, doi: 10. 1016/0141-6359(91)90001-Y.

DOI: 10.1016/0141-6359(91)90001-y

[19] S. Rakuff, Development of a precision long-range fast tool servo system for diamond turning, Ph.D. dissertation, University of North Carolina at Charlotte, (2004).

[20] Y. Yi, L. Li, Design and fabrication of a microlens array by use of a slow tool servo, Optics Letters, 2005, vol. 30/13, p.1707 – 1709, doi: 10. 1364/OL. 30. 001707.

DOI: 10.1364/ol.30.001707

[21] J. W. Roblee, Live-axis turning for the fabrication of non-rotationally symmetric optics, NASA STTR 2003 Solicitation, Proposal Number: 03-II T4. 01-9768, (2003).

[22] D. E. Luttrell, Machining Non-Axisymmetric Optics, ASPE Proceedings, Sep. 1990, p.31 – 34.

[23] S. S. Douglass, A machining system for turning non-axisymmetric surfaces, The University of Tennessee, Knoxville, Ph.D. Dissertation, (1983).

[24] W. Panusittikorn, Error compensation using inverse actuator dynamics, Ph.D. dissertation, North Carolina State University, (2004).

[25] W. Gao, T. Araki, S. Kiyono, Y. Okazaki and M. Yamanaka, Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder, Precision Engineering, vol. 27/3, July 2003, p.289.

DOI: 10.1016/s0141-6359(03)00028-x

[26] X. Lu, Electromagnetically-driven ultra-fast tool servos for diamond turning, Ph.D. dissertation, MIT, Sept. (2005).

[27] X. Lu, D. L. Trumper, Ultrafast Tool Servos for Diamond Turning, CIRP Annals, vol. 54/1, 2005, pp.383-388, doi: 10. 1016/S0007-8506(07)60128-0.

DOI: 10.1016/s0007-8506(07)60128-0

[28] R. Montesanti, High bandwidth rotary fast tool servos and a hybrid rotary/linear electro-magnetic actuator, Ph.D. dissertation, MIT, (2005).

DOI: 10.2172/891383

[29] S. R. Patterson, E. B. Magrab, The design and testing of a fast tool servo for diamond turning, Precision Engineering, 1985, vol. 7/3, p.123 – 128.

DOI: 10.1016/0141-6359(85)90030-3

[30] G. Sze-Wei, L. Han-Seok, M. Rahman, F. Watt, A fine tool servo system for global position error compensation for a miniature ultra-precision lathe, Int J of MTM, vol. 47/7-8, June 2007, pp.1302-1310, doi: 10. 1016/j. ijmachtools. 2006. 08. 023.

DOI: 10.1016/j.ijmachtools.2006.08.023

[31] H-S. Kim, K-I. Lee, K-M. Lee, Y-B. Bang, Fabrication of free-form surfaces using a long-stroke fast tool servo and corrective figuring with on-machine measurement, Int J of MTM, vol. 49/12-13, Oct. 2009, pp.991-997.

DOI: 10.1016/j.ijmachtools.2009.06.011

[32] M. Weck, M. Winterschiaden, T. Pfeifer, et al., Manufacturing of optical molds using an integrated simulation and measurement interface, SPIE Proceedings, 2004, vol. 5252, p.80 – 91.

[33] M. Weck, J. Hennig, R. Hilbing, Precision cutting processes for manufacturing of optical components, SPIE Proceedings, 2001, vol. 4440, p.145 – 151.

[34] S. Rakuff, J. F. Cuttino, Design and testing of a long-range, precision fast tool servo system for diamond turning, Precision Engineering, vol. 33/1, Jan. 2009, p.18 – 25, doi: 10. 1016/j. precisioneng. 2008. 03. 001.

DOI: 10.1016/j.precisioneng.2008.03.001

[35] X. K. Wang, D. Wu, Z. J. Yuan. Experimental research on the linear motor micro-feed device with high frequency response, long travel and high accuracy, CIRP Annals, 1991, vol. 40/1, p.379 – 382.

DOI: 10.1016/s0007-8506(07)62011-3

[36] B-S. Kim, J. Li , T-C. Tsao, Two-parameter robust repetitive control with application to a novel dual-stage actuator for noncircular machining, IEEE/ASME Trans. on Mechatronics, vol. 9/4, 2004, p.644.

DOI: 10.1109/tmech.2004.839042

In order to see related information, you need to Login.