Coulomb and Exchange Interaction Effect on Magnetic Properties of MnO


Article Preview

This calculation focus on the effect of Coulomb interaction U and exchange interaction J on spin magnetic moment Ms of MnO by using the local spin density approximation plus the Coulomb interaction (LSDA+U) method within full potential linear muffin-tin orbital (FP-LMTO). Our calculated results indicated that the spin magnetic moments correlated to U and J. The relevant results exhibited the increasing spin magnetic moments with increasing Coulomb interaction and exchange interaction. Furthermore, equation of spin magnetic moments, which good correspondence to the experimental data, were obtained and the relation of U and J parameter was defined.



Edited by:

Wu Fan




C. Thassana and W. Techitdheera, "Coulomb and Exchange Interaction Effect on Magnetic Properties of MnO", Applied Mechanics and Materials, Vols. 110-116, pp. 492-496, 2012

Online since:

October 2011




[1] M. Rubinstein, R.H. Kodama and S.A. Makhlouf, Electron Spin Resonance Study of NiO Antiferromagnetic Nanoparticles, , J Magn Magn Mater. 234, 289 (2001).


[2] H. Liu, W. Zheng, X. Yan, and B. Feng, J. Alloy Compd. 462, 356(2008).

[3] C.G. Shull, W.A. Strauser, and E.O. Wollan, Neutron Diffraction by Paramagnetic and Antiferromagnetic Substances, ,J. Phys. Rev. 83, 333 (1951).


[4] A.K. Cheetham and D.A. Hope, Magnetic ordering and exchange effects in the antiferromagnetic solid solutions MnxNi1-xO, J. Phys. Rev B., 27, pp.6964-6967, (1983).


[5] A. Svane Du and O. Gunnarsson, Transition-Metal Oxide in the Self-Interaction-Corrected Density-Functional Formalism, J. Lett. 65, vol 9, pp.1148-1151, (1990).


[6] Z. Szotek, and .W.M. Temmerman, Applicaton of the self-interaction correction to transition-metal oxides, J. Phys. Rev. B. 47, vol 7, 4029-4032, (1992).


[7] V.I. Anisimov, J Zaanen and O. K Anderson, Band Theory and Mott insulators: Hubbard U instead of Stoner I , J. Phys. Rev. B, 44, vol 3, pp.943-954, (1991).

[8] D.W. Boukhvalov, A.I. Lichtenstein and V.I. Anisimov, Effect of local Coulomb interactions on the electronic structure and exchange interactions in Mn12 magnetic molecules , J Phys. Rev. B. 65, pp.184435-6, (2002).

[9] I.A. Nekrasov, M.A. Korotin and F. V.I. Anisimov, cond-mat 0009107v1, (2008).

[10] F. Tran, P. Blaha, K. Schwarz and P. Novak, Hybrid exchange-correlation energy functionals for strongly correlated electrons: Applications to transition-metal monoxides, J. Phys. Rev. B. 74, 2006, pp.155108-155117.


[11] C. Rodl, F. Fuchs, J. Furthmuller and F. Bechstedt, Quasiparticle band structures of the antiferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO , J. Phys. Rev. B. 79, pp.235114-235121, (2009).


[12] G. Fisher, M. Dane, W. Temmerman and W. Hergert, Exchange coupling in transition metal monoxide : Electronic structure calculations, J. Phys. Rev. B 80, pp.014408-11, (2009).


[13] E. Engel, and R.N. Schmid, Insulating Ground States of Transition-Metal Monoxides from Exact Exchange , , J. Phys. Rev. Lett 103, pp.036404-4, (2009).


[14] S.Y. Savasov, Linear-response theory and lattice dynamics: A muffin-tin-orbital approach , J. Phys. Rev. B54 (1996).

[15] www. physics. ucdavis. edu/~mindlab/MaterialResearch/MINDLab /index_general. htm.

[16] S.K. Kwon and B.I. Min, Unquenched large orbital magnetic moment in NiO, J. Phys. Rev. B 62, 73(2000).


[4] - - 4. 58 SIC-LSDA-ASA.

[6] - - 4. 64 Constrained LSDA.

[7] 6. 9 0. 86 4. 61 LDA+Ud+p.

[9] 6. 9 0. 86 4. 59 Hybrid.

[10] - - 4. 46 QP+GW.

[11] - - 4. 50 LSIC.

[12] - - 4. 63 EXX.

[13] - - 4. 81.