Nanoimprint Photonic Crystal Film Enhanced Light-Trapping in a-Si Thin Film Solar Cells

Abstract:

Article Preview

We utilize photonic crystals to enhanced lighttrapping in a-Si:H thin film solar cells. The photonic crystals effectively increase Haze ratio of glass and decrease reflectance of a-Si:H solar cells. Therefore, increase the photon path length to obtain maximum absorption of the absorber layer. The photonic crystals can effective in harvesting weakly absorbing photons with energies just above the band edge. We were spin coated UV glue on the glass, and then nanoimprint of photonic crystals pattern. Finally, used UV lamp was curing of UV glue on the glass. When the 45∘composite photonic crystals structures, the haze was increase to 87.9 %, resulting the short circuit current density and efficiency increasing to 13.96 mA/cm2 and 7.39 %, respectively. Because 45∘composite photonic crystals easy to focus on the point of light lead to the effect of scattering can’t achieve. So, we designs 90∘V-shaped photonic crystals structures to increase scattering. When the 90∘V-shaped photonic crystals structures, the Haze was increase to 93.9 %. Therefore, the short circuit current density and Efficiency increasing to 15.62 mA/cm2 and 8.09 %, respectively. We observed ~35 % enhancement of the short-circuit current density and ~31 % enhancement of the conversion efficiency.

Info:

Periodical:

Edited by:

Wu Fan

Pages:

497-502

DOI:

10.4028/www.scientific.net/AMM.110-116.497

Citation:

W. P. Chu et al., "Nanoimprint Photonic Crystal Film Enhanced Light-Trapping in a-Si Thin Film Solar Cells", Applied Mechanics and Materials, Vols. 110-116, pp. 497-502, 2012

Online since:

October 2011

Export:

Price:

$35.00

[1] Takuya Matsui, Masaharu Tsukiji, Hiroyuki Saika, Toshihiko Toyama, Hiroaki Okamoto, Influence of substrate texture on microstructure and photovoltaic performances of thin film polycrystalline silicon solar cells, Journal of Non-Crystalline Solids, 299-302, (2002).

DOI: 10.1016/s0022-3093(01)01083-3

[2] M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Steibig, B. Rech, M. Wuttig, The effect of front ZnO: Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells, Journal of Applied Physics, vol. 101, (2007).

DOI: 10.1063/1.2715554

[3] T. Söderström, F. -J. Huag, V. Terrazzoni-Daudrix, and C. Ballif, Optimization of amorphous silicon thin film solar cells for flexible photovoltaics, Journal of Applied Physics, vol. 103, (2008), 114509.

DOI: 10.1063/1.2938839

[4] A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch1, U. Kroll, C. Droz and J. Bailat, Thin-film Silicon Solar Cell Technology, PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, Vol. 12, (2004), 113-142.

DOI: 10.1002/pip.533

[5] J. Krc, F. Smole and M. Topic, Study of enhanced light scattering in microcrystalline silicon solar cells, Journal of Non-Crystalline Solids, Vol. 338-340, (2004), 673-676.

DOI: 10.1016/j.jnoncrysol.2004.03.067

[6] S. Fay, L. Feitknecht, R. Schlu chter, U. Kroll, E. Vallat-Sauvain and A. Shah, Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells, Solar Energy Materials & Solar Cells, vol. 90, (2006).

DOI: 10.1016/j.solmat.2006.06.003

[7] Hitoshi Sai, Hiroyuki Fujiwara, Michio Kondo, and Yoshiaki Kanamori, Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern, APPLIED PHYSICS LETTERS, Vol. 93, (2008).

DOI: 10.1063/1.2993351

[8] D. Zhou, R. Biswas, Photonic crystal enhanced light-trapping in thin film solar cells, J. Appl. Phys., vol. 103, (2008), 093102-1-093102-5.

DOI: 10.1063/1.2908212

[9] R. Biswas, D. Zhou, Simulation and modeling of photonic and plasmonic crystal back-reflectors for efficient light trapping, Phys. Status Solidi A, vol. 207(3), (2010), 667-670.

DOI: 10.1002/pssa.200982855

[10] R. Biswas, J. Bhattacharya, B. Lewis, N. Chakravarty, V. Dalal, Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector, Solar Energy Materials & Solar Cells, vol. 94, (2010), 2337-2342.

DOI: 10.1016/j.solmat.2010.08.007

[11] Komatsu Tokutaro, Hitachi Chemical Co. Ltd., Grating-Based Optical Film For High-Efficiency Backlights, SID 07, (2007), 62.

[12] R. Biswas, C.G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission, PHYSICAL REVIEW B, vol. 74, (2006).

DOI: 10.1103/physrevb.74.045107

[13] Arvind V. Shah, Milan Vaněček , Johannes Meier, Fanny Meillaud, Joelle Guillet, Diego Fischer, Corinne Droz, Xavier Niquille, Sylvie Faÿ, Evelyne Vallat-Sauvain, Vanessa Terrazzoni-Daudrix, Julien Bailat, Basic efficiency limits, recent experimental results and novel light-trapping schemes in a-Si: H, lc-Si: H and 'micromorph tandem' solar cells, Journal of Non-Crystalline Solids, vol. 338-340, (2004).

DOI: 10.1016/j.jnoncrysol.2004.03.074

[14] J. Rappich, S. Lust a, I. Sieber, W. Henrion, J.K. Dohrmann, W. Fuhs, Light trapping by formation of nanometer diameter wire-like structures on lc-Si thin films, Journal of Non-Crystalline Solids, vol. 266-269, (2000), 284-289.

DOI: 10.1016/s0022-3093(99)00837-6

[15] O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, H.W. Schock, Texture etched ZnO: Al coated glass substrates for silicon based thin ®lm solar cells, Thin Solid Films, vol. 351, (1999).

DOI: 10.1016/b978-044450247-6.50073-4

In order to see related information, you need to Login.