Silver Nanoparticles Supported on Ordered Mesoporous Carbon for Formaldehyde Electrooxidation


Article Preview

Metal nanocatalysts, as the anodic materials, have become increasingly important in fuel cells due to their unique physical and chemical properties. Here we report the ordered mesoporous carbon (CMK-3) supported silver nanocatalysts have been prepared through the wet chemical reduction by using the reduction of formaldehyde. The electrochemical properties of the Ag/CMK-3 nanocatalysts for formaldehyde oxidation are studied by cyclic voltammograms (CV) and chronoamperometric curves (i-t) in alkaline aqueous solutions. The results show that the peak current density (from CV) of the Ag/CMK-3 electrode is 112 mA cm-2, above 2 times higher than that of Ag/XC-72 at the same Ag loading (14.15 μg cm-2). Furthermore, the i-t curves demonstrate that the Ag/CMK-3 nanocatalysts are efficient and stable electrocatalysts for anodic oxidation of formaldehyde in alkaline solutions. Our results indicate that the application potential of Ag/CMK-3 nanocatalysts with the improved electrocatalytic activity has far reaching effects on fuel cells and sensors.



Edited by:

Wu Fan




L. B. Kong et al., "Silver Nanoparticles Supported on Ordered Mesoporous Carbon for Formaldehyde Electrooxidation", Applied Mechanics and Materials, Vols. 110-116, pp. 508-513, 2012

Online since:

October 2011




[1] M. Hasanzadeh, B. Khalizadeh, N. Shadjou, G. Karim-Nezhad, L. Saghatforoush, I. Kazeman, M.H. Abnosi, A New Kinetic-Mechanistic Approach to Elucidate Formaldehyde Electrooxidation on Copper Electrode, Electroanalysis, vol. 22, Nov. 2009, pp.168-176.


[2] E.A. Batista, T. Iwasita, Adsorbed Intermediates of Formaldehyde Oxidation and Their Role in the Reaction Mechanism, Langmuir, vol. 22, Jul. 2006, p.7912–7916, doi: 10. 1021/la061182z.


[3] Z. Wang, Z.Z. Zhu, J. Shi, H.L. Li, Electrocatalytic oxidation of formaldehyde on platinum well-dispersed into single-wall carbon nanotube/polyaniline composite film, Appl. Surf. Sci, vol. 253, Sept. 2007, pp.8811-8817.


[4] G.Y. Cao, D.J. Guo. H.L. Li, Electrocatalytic oxidation of formaldehyde on palladium nanoparticles supported on multi-walled carbon nanotubes, J. Power Sources, vol. 162, Nov. 2006, pp.1094-1098, doi: 10. 1016/j. jpowsour. 2006. 07. 057.


[5] B.R. Sathe, D.B. Shinde, V.K. Pillai, Preparation and Characterization of Rhodium Nanostructures through the Evolution of Microgalvanic Cells and Their Enhanced Electrocatalytic Activity for Formaldehyde Oxidation, J. Phys. Chem. C., vol. 113, May. 2009, pp: 9616-9622, DOI: 10. 1021/jp901055v.


[6] J.L. Geng, Y.P. Bi, G.X. Lu, Morphology-dependent activity of silver nanostructures towards the electro-oxidation of formaldehyde, Electrochem. Commun., vol. 11, Jun. 2009, pp: 1255-1258, doi: 10. 1016/j. elecom. 2009. 04. 014.


[7] P. Ferrin, M. Mavrikakis, Structure Sensitivity of Methanol Electrooxidation on Transition Metals, J. Am. Chem. Soc., vol. 131, Sept. 2009, pp: 14381–14389, doi: 10. 1021/ja904010u.


[8] C. Bianchini, P.K. Shen. Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells, Chem. Rev., vol. 109, Jul. 2009, pp: 4183-4206, doi: 10. 1021/cr9000995.


[9] I. Lee, F. Delbecq, R. Morales, M.A. Albiter, F. Zaera. Tuning selectivity in catalysis by controlling particle shape, Nature Mater, vol 8, Jan. 2009, pp: 132-138, doi: 10. 1038/nmat2371.


[10] A. Taguchi, F. Schüth, Ordered mesoporous materials in catalysis, Microporous Mesoporous Mater, vol. 77, Jan 20, pp: 1-45, doi: 10. 1016/j. micromeso. 2004. 06. 030.


[11] H. Chang, S.H. Joo, C. Pak, Synthesis and characterization of mesoporous carbon for fuel cell applications, J. Mater. Chem., vol. 17, May. 2007, pp: 3078-3088, doi: 10. 1039/B700389G.

[12] J.L. Shi, Z.L. Hua, L.X. Zhang, Nanocomposites from ordered mesoporous materials, J. Mater. Chem., vol. 14, Jan 2004, pp: 795-806, doi: 10. 1039/B315861F.

[13] R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec, Ordered Mesoporous Carbons, Adv. Mater., vol. 13, May. 2001, pp: 677-681, doi: 10. 1002/1521-4095.


[14] H.J. Shin, R. Ryoo, M. Kruk, M. Jaroniec, Modification of SBA-15 pore connectivity by high-temperature calcination investigated by carbon inverse replication, Chem. Commun., Feb. 2001, pp.349-350, doi: 10. 1039/b009762o.


[15] L.B. Kong, H. Li, J. Zhang; Y.C. Luo, L. Kang, Platinum catalyst on ordered mesoporous carbon with controlled morphology for methanol electrochemical oxidation, Applied Surface Science, vol. 256, Apr. 2010, pp.6688-6693.


[16] E.N. Coker, W.A. Steen, J. T, Miller, A.J. Kropf, J.E. Miller, Nanostructured Pt/C electrocatalysts with high platinum dispersions through zeolite-templating, Microporous Mesoporous Mater, vol. 101 Apr 2007, pp.440-444.


[17] S.Z. Zhang, W.H. Ni, X.S. Kou, M.H. Yeung, L.D. Sun, J.F. Wang, C.H. Yan, Formation of Gold and Silver Nanoparticle Arrays and Thin Shells on Mesostructured Silica Nanofibers, Adv. Funct. Mater., vol. 17, Sept. 2007, pp: 3258-3266, doi: 10. 1002/adfm. 200700366.


[18] L. Majari Kasmaee, F. Gobal, A preliminary study of the electro-oxidation of l-ascorbic acid on polycrystalline silver in alkaline solution, J. Power Sources., vol. 195, Jan. 2010, pp: 165-169, doi: 10. 1016/j. jpowsour. 2009. 06. 095.


Fetching data from Crossref.
This may take some time to load.