A Study on Nanocutting of Monocrystalline Silicon by Molecular Dynamics Simulation


Article Preview

Three dimensional molecular dynamics simulation on the nanocutting of monocrystalline silicon is carried out to investigate the material deformation behaviors and atomic motion characteristics of the machined workpiece. A deformation criterion is developed to determine the material deformation and phase transformation behavior in the subsurface layer based on the single-atom potential energy variations. The results show that the machined chips suffer a complex phase transformation and eventually present an amorphous structure caused by the plastic deformation behavior. A polycrystalline structure is obtained on the machined surface. Both plastic and elastic deformation simultaneously takes place on the machined surface, and elastic deformation takes place under the machined surface. In order to further unveil the mechanism of nanocutting process, the displacements of all atoms are also simulated. The simulation results shows that different atomic motions occur in different regions in the workpiece, and the chips formations occur via extrusion.



Edited by:

Wu Fan




Z. W. Zhu et al., "A Study on Nanocutting of Monocrystalline Silicon by Molecular Dynamics Simulation", Applied Mechanics and Materials, Vols. 110-116, pp. 5405-5412, 2012

Online since:

October 2011




[1] J. Yan, H. Zhao, T. Kuriyagawa, Effects of tool edge radius on ductile machining of silicon: an investigation by FEM, Semicond. Sci. Technol., vol. 24, 2009, 075018.

DOI: https://doi.org/10.1088/0268-1242/24/7/075018

[2] F. Z. Fang, H. Wu, Y.C. Liu, Modelling and experimental investigation on nanometric cutting of monocrystallineline silicon, International Journal of Machine Tools & Manufacture, vol. 45, 2005, p.1681–1686.

DOI: https://doi.org/10.1016/j.ijmachtools.2005.03.010

[3] F. Z. Fang, H. Wu, W. Zhou, et al. A study on mechanism of nano-cutting single crystal silicon, Journal of Materials Processing Technology, vol. 184, 2007, p.407–410.

DOI: https://doi.org/10.1016/j.jmatprotec.2006.12.007

[4] P. S. Sreejith, Machining force studies on ductile machining of silicon nitride, Journal of Materials Processing Technology, vol. 169, 2005, p.414–417.

DOI: https://doi.org/10.1016/j.jmatprotec.2005.04.092

[5] R. G. Jasinevicius, J. G. Duduch, P. S. Pizani, Structure evaluation of submicrometre silicon chips removed by diamond turning, Semicond. Sci. Technol., vol. 22, 2007, p.561–573.

DOI: https://doi.org/10.1088/0268-1242/22/5/019

[6] M. B. Cai, X. P. Li, M. Rahman, Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation, Journal of Materials Processing Technology, vol. 192–193, 2007, p.607–612.

DOI: https://doi.org/10.1016/j.jmatprotec.2007.04.028

[7] X. Liu, R. E. DeVor, S. G. Kapoor, K. F. Ehmann, The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science, ASME J. Manuf. Sci. Eng., vol. 126, 2004, pp.666-678.

DOI: https://doi.org/10.1115/1.1813469

[8] Q. X. Pei, C. Lu, H. P. Lee, Large scale molecular dynamics study of nanometric machining of copper, Computational Materials Science, vol. 41, 2007, p.177–185.

DOI: https://doi.org/10.1016/j.commatsci.2007.04.008

[9] Q. X. Pei, C. Lu, H. P. Lee, Y. W. Zhang, Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations, Nanoscale Res. Lett., vol. 4, 2009, p.444–451.

DOI: https://doi.org/10.1007/s11671-009-9268-z

[10] C. Lua, Y. Gao, G. Y. Deng, et al. Atomic-scale anisotropy of nanoscratch behavior of single crystal iron, Wear, vol. 267, 2009, p.1961–(1966).

DOI: https://doi.org/10.1016/j.wear.2009.05.006

[11] Y. D. Yan, T. Sun, S. Dong, X. C. Luo, Y. C. Liang, Molecular dynamics simulation of processing using AFM pin tool, Appl. Surf. Sci., vol. 252, 2006, p.7523–7531.

DOI: https://doi.org/10.1016/j.apsusc.2005.09.005

[12] J. J. Zhang , T. Sun, Y. D. Yan, Y. C. Liang, et al. Molecular dynamics simulation of subsurface deformed layers in AFM-based nanometric cutting process, Applied Surface Science, vol. 254 2008, p.4774–4779.

DOI: https://doi.org/10.1016/j.apsusc.2008.01.096

[13] P. Z. Zhu, Y. Z. Hu, T. B. Ma, et al. Study of AFM-based nanometric cutting process using molecular dynamics, Appl. Surf. Sci., 2010, doi: 10. 1016/j. apsusc. 2010. 05. 044.

[14] J. Tersoff, Modeling solid-state chemistry: interatomic potentials for multicomponent systems, Phys. Rev. B, vol. 39, 1989, p.5566–5568.

DOI: https://doi.org/10.1103/physrevb.39.5566

[15] S. J. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comp Phys, vol. 117, 1995, pp.1-19.

[16] S. J. Plimpton, R. Pollock, M. Stevens, Particle-Mesh Ewald and rRESPA for Parallel Molecular Dynamics Simulations, in Proc of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN, March, (1997).

[17] R. Promyoo, H. EI-Mounayri, X. Yang, Molecular Dynamics Simulation of Nanometric Machining Under Realistic Cutting Conditions, Applied Surface Science, vol. 255, 2009, pp.0169-4332.

DOI: https://doi.org/10.1115/msec_icmp2008-72533

[18] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modelling Simul. Mater. Sci. Eng., vol. 18, 2010, 015012 (7pp).

DOI: https://doi.org/10.1088/0965-0393/18/1/015012

[19] X. Li, M. Cai, M. Rahman, Nanoscale Cutting of Monocrystalline Silicon Using Molecular Dynamics Simulation, Chinese Journal of Mechanical Engineering, vol. 20, 2007, pp.8-11.

DOI: https://doi.org/10.3901/cjme.2007.05.008