Oxidation Behavior in Super-Plastic Microforming of Zr65Cu17.5Ni10Al7.5 Bulk Metallic Glass

Abstract:

Article Preview

The influence of oxidation behavior on super-plastic microforming of bulk metallic glass Zr65Cu17.5Ni10Al7.5 in the super-cooled liquid region was investigated. Samples were heated in air from room temperature to 395°C, 410°C, and 430°C, respectively, and kept under each temperature for 40 minutes. The increased weight of samples and the thickness of oxide layer were measured. Subsequently, the sample was compressed under 410°C with a micro gear silicon mold. In result, the oxide layer of the gear cracked and could be easily removed; also, the X-ray diffractometer showed that the gear core below the oxide layer remained an amorphous structure. It can be concluded that the oxidation behavior of Zr65Cu17.5Ni10Al7.5 does not affect the super-plastic deformation, which indicates the feasibility of super-plastic microforming process in air.

Info:

Periodical:

Edited by:

Huixuan Zhang, Ye Han, Fuxiao Chen and Jiuba Wen

Pages:

1377-1382

DOI:

10.4028/www.scientific.net/AMM.117-119.1377

Citation:

J. Wang et al., "Oxidation Behavior in Super-Plastic Microforming of Zr65Cu17.5Ni10Al7.5 Bulk Metallic Glass", Applied Mechanics and Materials, Vols. 117-119, pp. 1377-1382, 2012

Online since:

October 2011

Export:

Price:

$35.00

[1] Inoue A, Zhang T, Masumoto T, Mater Trans JIM, 36(3): 391, (1995).

[2] Kays C. C, Kim C. P, Johnson W. L, PHYSICAL REVIEW LETTERS, 84(13): 901-2904, (2000).

[3] Pang S.J., Zhang T., Kimura H, Asami K, Inoue A, Materials Transactions, JIM, 41(11): 1490- 1494, (2000).

[4] WangJ. G, ChoiB. W, NiehT. G, et al, J Mater Res, 15(4): 913-922, (2000).

[5] Schroers J, Advanced Materials 22(14): 1566-1597, (2010).

[6] Johnson, W. L., G. Kaltenboeck, et al, science 332(6031): 828, (2011).

[7] Carmo, M., R. C. Sekol, et al. Acs Nano 5(4): 2979-2983, (2011).

[8] Kawamura Y, Shibata T, Inoue A, Masumoto T, Appl Phys Lett, 69: 1208, (1996).

[9] Owen D.M., Rosakis A.J., Johnson W. L, Materials Research Society Symposium-Proceedings, 554: 419-430, (1999).

[10] Jan Schroers, JOM Journal of the Minerals, Metals and Materials Society, 57(5): 35-39, (2005).

[11] D. Wang, G. Liao, J. Pan, et al, Journal of Alloys and Compounds, 484(1-2): 118-122, (2009).

[12] Golden Kumar, Hong X. Tang, Jan Schroers, NATURE, 2009, 457( 7231 ): 868-872.

DOI: 10.1038/nature07718

[13] Jan Schroers, Tranquoc Nguyen, Sean O'Keeffe, et al, Materials Science and Engineering: A, 449-451, 898-902, (2007).

DOI: 10.1016/j.msea.2006.02.398

[14] Gerald R. Bourne, Jeffrey Bardt, W.G. Sawyer, et al, Journal of Materials Processing Technology, 209(10): 4765–4768, (2009).

DOI: 10.1016/j.jmatprotec.2008.12.003

[15] J. Lu, G. Ravichandran, W. L. Johnson. Acta Materialia, 51(12): 3429–3443, (2003).

[16] Inoue A., Acta Mater, 48: 279-306, (2000).

[17] Mondal K, Chatterjee U. K, Murty B. S, Journal of Non-Crystalline Solids, 334-335: 544-547, (2004).

[18] Kimura H. M, Asami K, Inoue A, Masumoto T, Corros. Sci, 35: 909-915, (1993).

[19] Sharma S. K, Stunskus T, Ladebusch H, Mater. Sci. Eng., A Struct. Mater.: Prop. Microstruct, 747: 304-306, (2001).

[20] Kim C. W, Jeong H. G, Lee D. B, Materials Letters, 62(4-5): 584-586, (2008).

[21] Koster U, Jastrow L, Materials Science and Engineering A, 449-451: 57-62, (2007).

In order to see related information, you need to Login.