Self-Heating in Monolith and U-Shape Microcantilever Hotplates


Article Preview

Microcantilever hotplates use the self-heating phenomenon to achieve the required large, uniform temperature field or the cantilever-tip movement. The present study investigates the effect of self-heating on temperature and its distribution in microcantilever hotplates in monolith and u-shape configuration with different substrate materials, operating environments and applied voltages. The cantilevers are made of Si and SiO2 with a p-type Si resistor embedded. The cantilevers are operated in air and water at different applied voltages. The numerical analysis uses finite element analysis software ANSYS Multiphysics. Results show that monolith and u-shape cantilevers have similar temperature distributions, but the maximum temperature values in u-shape cantilever are higher.



Edited by:

Jiuba Wen, Fuxiao Chen, Ye Han and Huixuan Zhang






M. Z. Ansari et al., "Self-Heating in Monolith and U-Shape Microcantilever Hotplates", Applied Mechanics and Materials, Vol. 120, pp. 218-221, 2012

Online since:

October 2011




[1] R. Berger, H.P. Lang, Ch. Gerber, J.K. Gimzewski, J.H. Fabian, L. Scandella, E. Meyer, H. -J. Guntherodt, Micromechanical thermogravimetry, Chem. Phys. Lett. 294 (1998) 363–369.

DOI: 10.1016/s0009-2614(98)00817-3

[2] L.A. Pinnaduwage,A. Gehl, D.L. Hedden, G. Muralidharan, T. Thundat, R.T. Lareau, T. Sulchek, L. Manning, B. Rogers, M. Jones, J.D. Adams, A microsensor for trinitrotoluene vapour, Nature 425 (2003) 474.

DOI: 10.1038/425474a

[3] J. Lee, H. Hunter, A. Glezer W.P. King, Phase change and cooling characteristics of microjets measured using microcantilever heaters, Sens. Actuators A 147 (2008) 64–69.

DOI: 10.1016/j.sna.2008.03.022

[4] Bashir, King et al., Rapid thermal lysis of cells using silicon–diamond microcantilever heaters, Lab on Chip, vol. 10 (2010), p.1135–1141.

DOI: 10.1039/b923791g

[5] B.W. Chui, T.D. Stowe, Y.S. Ju, K.E. Goodson, T.W. Kenny, H.J. Mamin, B.D. Terris, and R.P. Ried, Low-stiffness silicon cantilever with integrated heaters and piezoresistive sensors for highdensity AFM thermomechanical data storage, J. Microelectromech. Syst., 7 (1998).

DOI: 10.1109/84.661386

[6] G. Binnig, M. Despont, U. Drechsler, W. Haberle, M. Lutwyche, P. Vettiger, H. J. Mamin, B. W. Chui, and T. W. Kenny, Ultrahigh-density atomic force microscopy data storage with erase capability, Appl. Phys. Lett., vol. 74 (1999) p.1329.

DOI: 10.1063/1.123540

[7] B.A. Nelson W.P. King, A.R. Laracuente, P.E. Sheehan, L.J. Whitman, Direct deposition of continuousmetal nanostructures by thermal dip-pen nanolithography, Appl. Phys. Lett. 88 (2006) 033104.

DOI: 10.1063/1.2164394

[8] M.Z. Ansari and C. Cho, An analytical model of joule heating in piezoresistive microcantilevers, Sensors, vol. 10( 2010), p.9668–9686.

DOI: 10.3390/s101109668

In order to see related information, you need to Login.