Structural Optimization Based on Static Design Criteria of a Long Span Mobile Bridge Using Genetic Algorithm


Article Preview

Long span mobile bridges (LSMBs) are widely used in military maneuver operations or civil rescue works across narrow gorges or rivers. Especially it is quite a difficult problem to design LSMBs of over 50 m length satisfying required safety criteria under military load class 70 (MLC 70), namely permit vehicle weight of 63.5 tons. In order to optimize a LSMB of 60 m length for both lightweight and minimum deflection under MLC 70, a multi-objective optimization process based on genetic algorithm (GA) and weighted sum method for handling multiple objectives was utilized after its validity verification with the six-member and five-node truss problem. GA in this study utilized a variable penalty function to treat design constraints and fitness function to deal with both objective and penalty functions together. Finite element structural analysis of the LSMB was done by ANSYS for the design optimization process. As the result, the optimally designed LSMB of 60 m span that meet requirements and safety criteria of a military bridging equipment design and test code has been successfully obtained.



Edited by:

Dongye Sun, Wen-Pei Sung and Ran Chen




S. H. Jang et al., "Structural Optimization Based on Static Design Criteria of a Long Span Mobile Bridge Using Genetic Algorithm", Applied Mechanics and Materials, Vols. 121-126, pp. 4732-4741, 2012

Online since:

October 2011




[1] B. C. Song, Y. C. Park, S. W. Kang and K. H. Lee: Proc. IMechE, Part D: J. of Automobile Engineering Vol. 223 (2009), pp.727-735.

[2] G. Marannano and G. V. Mariotti: Meccanica Vol. 43 (2008), pp.251-262.

[3] J. S. Han, J. S. Ko and J. G. Korvink: J. Micromech. Microeng Vol. 14 (2004) pp.1585-1596.

[4] Y. Y. Kim, R. K. Kapania, E. R. Johnson, M. E. Palmer, T. K. Kwon, C. U. Hong and N. G. Kim: J. Mech. Sci. Tech. Vol. 20 (2006) pp.251-261.

[5] S. B. Jeong, S. Yoon, S. Xu and G. J. Park: Proc. IMechE, Part D: J. of Automobile Engineering Vol. 224 (2010), pp.489-501.

[6] J. H. Holland: Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI (1975).

[7] S. Kirkpatrick, C. D. Gelatt Jr. and M. P. Vecchi: Science Vol. 220 (1983) pp.671-680.

[8] F. Glover: Computer and Operations Research Vol. 13 (1986) pp.533-549.

[9] M. Dorigo: Ph. D thesis, Politecnico di Milano, Italy (1992).

[10] S. Nakrani and C. Tovey: Adaptive Behavior Vol. 12 (2004) pp.223-240.

[11] D. E. Goldberg: Genitic Algorithm in Search, Optimization and Machine Learning, Addison-Wiley, Singapore (1989).

[12] J. S. Arora: Introduction to optimum design, McGraw Hill, Singapore (1989).

[13] A. D. Belegundu and T. R. Chandrupatla: Optimization concepts and applications in engineering, Prentice-Hall, Upper Saddle River, NJ (1999).

[14] M. Gen and R. Cheng: Genetic Algorithms & Engineering Optimization, John Wiley & Sons, New York, NY (2000).

[15] M. Ohsaki: Comput. Struct. Vol. 57 (1995) pp.219-225.

[16] M. J. Jakiela, C. C. Chapman, J. Duda, A. Adewuya and K. Saitou: Comput. Methods Appl. Mech. Engrg. Vol. 186 (2000) pp.339-356.

[17] S. D. Rajan: J. Struct. Engng. Vol. 121 (1995) pp.1480-1487.

[18] C. A. Coello, in: Expert Systems Applications and Artificial Intelligence, edited by J. G. Cheng, F. G. Attia and D. L. Crabtree, IITT International Technology Transfer Series, Houston, TX (1994) pp.331-336.

[19] P. Hajela and C. J. Shin: AAIA J. Vol. 28 (1990) pp.670-675.

[20] M. Yoshimura: J. Jap. Soc. Precis. Eng. Vol. 53 (1987) pp.601-606.

[21] Y. H. Choi, S. T. Kim, T. H. Kim and J. K. Park: J. Machine Engineering Vol. 4 (2004) pp.139-149.

[22] S. H. Jang, B. C. Kwon, Y. H. Choi and J. K. Park: J. Manuf. Engng. Tech. Vol. 18 (2009) pp.103-109.

[23] K. Deb: Comput. Methods Appl. Mech. Engrg. Vol. 186 (2000) pp.311-338.

[24] C. A. Coello: Computers in Industry Vol. 41 (2000) pp.113-127.

[25] A. Kurpati, S. Azarm and J. Wu: Struct. Multidisc. Optim. Vol. 23 (2002) pp.204-213.

[26] K. Deb and S. Gulati: Finite Elem. Anal. Design, Vol. 37 (2001) pp.447-465.

[27] P. Hajela and E. Lee: Int. J. Solids Structures, Vol. 32 (1995) pp.3341-3357.

[28] B. Hornbeck, J. Kluck and R. Connor: Trilateral Design and Test Code for Military Bridging and Gap-Crossing Equipment, TACOM Research Development and Engineering Center, Warren, MI (2005).