Local Stability and Hopf Bifurcation Analysis of the Arneodo’s System


Article Preview

The chaotic behaviors of the Arneodo’s system are investigated in this paper. Based on the Arneodo's system characteristic equation, the equilibria of the system and the conditions of Hopf bifurcations are obtained, which shows that Hopf bifurcations occur in this system. Then using the normal form theory, we give the explicit formulas which determine the stability of bifurcating periodic solutions and the direction of the Hopf bifurcation. Finally, some numerical examples are employed to demonstrate the effectiveness of the theoretical analysis.



Edited by:

Han Zhao




Y. J. Liu et al., "Local Stability and Hopf Bifurcation Analysis of the Arneodo’s System", Applied Mechanics and Materials, Vols. 130-134, pp. 2550-2557, 2012

Online since:

October 2011




[1] Sparrow C. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. New York: SpringerVerlag; (1982).

[2] Chen G, Dong X. From chaos to order: methodologies, perspectives and applications. Singapore: World Scientific; (1998).

[3] Chen G, Ueta T. Yet another chaotic attractor. Int J Bifurcation & Chaos 1999; 9: 1465-1466.

DOI: https://doi.org/10.1142/s0218127499001024

[4] Liu C, Liu T, Liu L, Liu K. A new chaotic attractor. Chaos, Solitons & Fractals 2004; 22: 1031-1038.

DOI: https://doi.org/10.1016/j.chaos.2004.02.060

[5] Lorenz EN. Deterministic non-periodic flows. J Atmos Sci 1963; 20: 130-141.

[6] Arneodo A, Coullet P, Spiegel E, Tresser C. Asymptotic chaos. Physica D 1985; 14(3): 327C47.

DOI: https://doi.org/10.1016/0167-2789(85)90093-4

[7] Jiang S, Tian L, Wang X. Control of Arneodo chaotic system. Journal of J iangsu University(Natural Science Edition) 2005; 26(6): 492-495.

[8] Lu J. Chaotic dynamics and synchronization of fractional-order Arneodo's systems. Chaos, Solitons & Fractals 2005; 26: 1125-1133.

DOI: https://doi.org/10.1016/j.chaos.2005.02.023

[9] Li C G, Chen G R. Hopf bifurcation in an Internet congestion control model. Chaos, Solitons & Fractals 2004; 19: 853-862.

DOI: https://doi.org/10.1016/s0960-0779(03)00269-8

[10] Wang H P, Li J, Zhang K. Stability and Hopf bifurcation of Maglev System with Delayed Speed Feedback Control. Acta Automatica Sinica. 2007; 33(8): 829-834.

DOI: https://doi.org/10.1360/aas-007-0829

[11] Fang S L, Jiang M H. Stability and Hopf bifurcation for a regulated logistic growth model with discrete and distributed delys. Commun Nolinear Sci Numer Simulat. 2009; 14: 4292-4303.

[12] Hassard B, Kazarinoff N, Wan Y. Theory and application of Hopf bifurcation. Cambridge: Cambridge University Press; (1981).

[13] Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Field. New York: Springer; (1983).