Liquid-Phase Diffusion of Phosphorus Atoms in Laser-Doped Crystalline Silicon Solar Cells

Abstract:

Article Preview

In this paper, a nonlinear numerical model of laser melting of crystalline silicon solar cells and phosphorus diffusion has been established by finite difference method implemented in MATLAB. Based on the features of liquid-phase diffusion of phosphorus atoms in melting silicon, theoretical simulation for phosphorus concentration profiles and explanation for the mechanism of laser doping are achieved. The theoretical phosphorus concentration profile is in good agreement with the experimental SIMS data.

Info:

Periodical:

Edited by:

Han Zhao

Pages:

3316-3319

Citation:

T. Li et al., "Liquid-Phase Diffusion of Phosphorus Atoms in Laser-Doped Crystalline Silicon Solar Cells", Applied Mechanics and Materials, Vols. 130-134, pp. 3316-3319, 2012

Online since:

October 2011

Export:

Price:

$38.00

[1] D. Kray, M. Aleman, A. Fell, S. Hopman, K. Mayer, M. Mesec, R. Muller, G. Willeke, S. Glunz, D. Neuhaus, Laser-Doped Silicon Solar Cells by Laser Chemical Processing (LCP) exceeding 20% Efficiency, in: 33rd IEEE Photovoltaic Specialist Conference, California, USA, 2008, pp.786-788.

DOI: https://doi.org/10.1109/pvsc.2008.4922848

[2] A. Miotello, R. Kelly, Critical assessment of thermal models for laser sputtering at high fluences, Appl. Phys. Lett., 67 (1995) 3535-3537.

DOI: https://doi.org/10.1063/1.114912

[3] R. Wood, G. Geist, Modeling of nonequilibrium melting and solidification in laser-irradiated materials, Phys. Rev. B, 34 (1986) 2606-2620.

DOI: https://doi.org/10.1103/physrevb.34.2606

[4] C. Grigoropoulos, R. Buckholz, G. Domoto, A heat transfer algorithm for the laser-induced melting and recrystallization of thin silicon layers, J. Appl. Phys., 60 (1986) 2304-2309.

DOI: https://doi.org/10.1063/1.337139

[5] R. Wood, G. Giles, Macroscopic theory of pulsed-laser annealing. I. Thermal transport and melting, Phys. Rev. B, 23 (1981) 2923-2942.

DOI: https://doi.org/10.1103/physrevb.23.2923

[6] D. Lowndes, R. Wood, R. Westbrook, Pulsed neodymium: yttrium aluminum garnet laser (532 nm) melting of crystalline silicon: Experiment and theory, Appl. Phys. Lett., 43 (1983) 258-260.

DOI: https://doi.org/10.1063/1.94318

[7] G. Jellison Jr, F. Modine, Optical absorption of silicon between 1. 6 and 4. 7 eV at elevated temperatures, Appl. Phys. Lett., 41 (1982) 180-182.

DOI: https://doi.org/10.1063/1.93454

[8] G. Jellison Jr, F. Modine, Optical constants for silicon at 300 and 10 K determined from 1. 64 to 4. 73 eV by ellipsometry, J. Appl. Phys., 53 (1982) 3745-3748.

[9] C. Glassbrenner, G. Slack, Thermal conductivity of silicon and germanium from 3 K to the melting point, Phys. Rev, 134 (1964) 1058-1069.

DOI: https://doi.org/10.1103/physrev.134.a1058

[10] R.T. Young, J. Narayan, R.F. Wood, Electrical and structural characteristics of laser-induced epitaxial layers in silicon, Appl. Phys. Lett., 35 (1979) 447-449.

DOI: https://doi.org/10.1063/1.91167

[11] H. Kodera, Diffusion coefficients of impurities in silicon melt, Jap. J. Appl. Phys, 2 (1963) 212-219.