Humidity Sensor Based on ZnO Nanorods Assembled by Dielectrophoresis

Abstract:

Article Preview

The preparation and humidity sensing of nanorod-like ZnO materials are studied. Firstly, the ZnO nanoparticles with high specific surface area are prepared via chemical solution growth techniques. Then, some ZnO nanoparticles are manipulated by dielectrophoresis in interdigital electrodes to assemble a capacitive-type humidity sensor. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) are used to determine the structural and morphological properties. The results show that the sensor prototypes have high sensitivity, and it is the potential sensing material for high performance humidity sensors.

Info:

Periodical:

Edited by:

Honghua Tan

Pages:

1121-1125

Citation:

R. B. Ai and F. J. Miao, "Humidity Sensor Based on ZnO Nanorods Assembled by Dielectrophoresis", Applied Mechanics and Materials, Vols. 138-139, pp. 1121-1125, 2012

Online since:

November 2011

Export:

Price:

$38.00

[1] N. Yamazoe, Y. Shimizu, Humidity sensors: principles and applications, Sens. Actuators, vol. 10, p.379–398, (1986).

DOI: https://doi.org/10.1016/0250-6874(86)80055-5

[2] E. Rezlescu, N. Rezlescu, P.D. Popa, Fine-grained MgCu ferrite with ionic substitutions used as humidity sensor, J. Magn. Magn. Mater. vol. 290-291, p.1001–1004, (2005).

DOI: https://doi.org/10.1016/j.jmmm.2004.11.309

[3] Y. Li, M. J. Yang, Y. She, Humidity sensors using in situ synthesized sodium polystyrenesulfonate ZnO nanocomposites, Talanta, vol. 62, p.707–712, (2004).

DOI: https://doi.org/10.1016/j.talanta.2003.09.011

[4] B. Sorli, F. Pascal-Delannoy, A. Giani, A. Foucaran, A. Boyer, Fast humidity sensor for high range 80–95% RH, Sens. Actuators A: Phys. vol. 100, p.24–31, (2002).

DOI: https://doi.org/10.1016/s0924-4247(02)00063-8

[5] A. Bearzotti, M.B. Johnny, I. Plinio, F. Paolo, T. Enrico, Humidity sensors based on mesoporous silica thin films synthesised by block copolymers, J. Eur. Ceram. Soc. vol. 24, p.1969–1972, (2004).

DOI: https://doi.org/10.1016/s0955-2219(03)00521-1

[6] C. Wang, C. Wu, I. Chen, Y. Huang, Humidity sensors based on silica nanoparticle aerogel thin films, Sens. Actuators B: Chem. vol. 107, p.402–410, (2005).

DOI: https://doi.org/10.1016/j.snb.2004.10.034

[7] Y. Li, M.J. Yang, Y. She, Humidity sensors using in situ synthesized sodium polystyrenesulfonate/ZnO nanocomposites, Talanta, vol. 62, p.707–712, (2004).

DOI: https://doi.org/10.1016/j.talanta.2003.09.011

[8] C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, A. Zappettini, Metal oxide nanocrystals for gas sensing, Sens. Actuators B, vol. 109, p.2–6, (2005).

DOI: https://doi.org/10.1016/j.snb.2005.03.091

[9] P.L.P. Hoa, G. Suchaneck, G. Gerlach, Influence of polycrystalline silicon as electrical shield on reliability and stability of piezoresistive sensors, Sens. Actuators A, vol. 120, p.567–572, (2005).

DOI: https://doi.org/10.1016/j.sna.2004.12.029

[10] Y. Sakai, Y. Sadaoka, M. Matsuguchi, Humidity sensors based on polymer thin films, Sens. Actuators B, vol. 35–36, p.85–90, (1996).

DOI: https://doi.org/10.1016/s0925-4005(96)02019-9

[11] X. -H. Wang, Y. -F. Ding, J. Zhang, Z. -Q. Zhu, S. -Z. You, S. -Q. Chen, J. Zhu, Humidity sensitive properties of ZnO nanotetrapods investigated by a quartz crystal microbalance, Sens. Actuators B, vol. 115, p.421–427 (2006).

DOI: https://doi.org/10.1016/j.snb.2005.10.005

[12] S. Pizzini, N. Butta, D. Narducci, M. Palladino, J. Electrochem. Soc. vol. 136, p.1945, (1989).

[13] G.S. Kino, R.S. Wagner, J. Appl. Phys. vol. 44, p.1480, (1973).

[14] J.A. Aranovich, D. Golmayo, A.L. Fahrenbruch, R.H. Bube, J. Appl. Phys. vol. 51, p.4260, (1980).

[15] Z. -C. Jin, I. Hamberg, C.G. Granqvist, B.E. Sernelius, K. -F. Berggren, Thin Solid Films, vol. 164, p.381, (1988).

DOI: https://doi.org/10.1016/0040-6090(88)90166-6

[16] J.N. Zeng, J.K. Low, Z.M. Ren, T. Liew, Y.F. Lu, Appl. Surf. Sci. vol. 197–198, p.362–367, (2002).

[17] K.L. Narasimhan, S.P. Pai, V.R. Palkar, R. Pinto, Thin Solid Films, vol. 295, p.104, (1997).

[18] S. Fujihara, C. Sasaki, T. Kimura, Appl. Surf. Sci. vol. 180, p.341–350, (2001).

[19] Y. Natsume, H. Sakata, Mater. Chem. Phys. vol. 78, p.170–176, (2002).

[20] H.A. Pohl, Dielectrophoresis, The Behavior of Neutral Matter in Nonuniform Electric Fields, Cambridge University Press, Cambridge, (1978).

[21] T.B. Jones, Electromechanics of Particles, CambridgeUniversity Press, NewYork, (1995).

[22] H.W. Seo, C. -S. Han, W.S. Jang, J. Park, Manipulation of carbon nanotubes and nanowires, Curr. Appl. Phys. vol. 6S1, pp. e216–e219, (2006).

[23] B.R. Tao, J. Zhang, F.J. Miao, Capacitive humidity sensors based on Ni/SiNWs nanocomposites, Sensors and Actuators B, vol. 136, pp.144-150 (2009).

DOI: https://doi.org/10.1016/j.snb.2008.10.039