The Investigation of Temperature Effect on Dynamic Characteristics of Rubber Isolator

Abstract:

Article Preview

This article focuses on the temperature dependent dynamic properties of rubber isolator. First, a set of experimental device was designed to conduct the experimental investigation. Then, a polynomial model of hysteretic used as an isolator restoring force model was proposed and the model parameters were identified using the displacement-restoring force loop from experiment by the optimal least-squares arithmetic. Finally, the Hermite interpolation method was utilized to add the number of identified parameters, such that curvatures that represent the first order stiffness, the third order stiffness and damping varied with frequency, amplitude under different temperature were obtained. The analysis results indicated that the first order stiffness varies weakly with the temperature increasing, and there is an area of the first order stiffness varied drastically. The third order stiffness have a strong nonlinear area within the low frequency and little amplitude, the third order stiffness magnitude increases with the temperature increasing firstly, then decreases while the temperature over 50°C. There is a sensitive area as the amplitude less than 1.5mm, the damping decreases rapidly with the augmenting of vibration amplitude, and the rate of decreasing is less gradually with the temperature rising.

Info:

Periodical:

Edited by:

Honghua Tan

Pages:

575-580

DOI:

10.4028/www.scientific.net/AMM.138-139.575

Citation:

D. B. Han "The Investigation of Temperature Effect on Dynamic Characteristics of Rubber Isolator", Applied Mechanics and Materials, Vols. 138-139, pp. 575-580, 2012

Online since:

November 2011

Authors:

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.