Trajectory Generation of Robot Manipulators Using an Artificial Potential Function and Genetic Algorithms

Abstract:

Article Preview

This work presents the problem of trajectory generation based on the use of artificial potential fields associated to articulated robotic manipulators, in order to find a trajectory so that a manipulator reaches a goal from an initial position without colliding with obstacles within its workspace. The search of a continuous sequence of collision-free configurations between an initial configuration and the final position implies the exploration of a non-linear solution space which can be described and solved with an optimization approach. It does not take into account the use of complex mathematics in an analytical or numerical solution of the inverse kinematics, where are shown manifolds solutions as a result of the angular displacements of each joint of the robot. The genetic algorithm used as strategy, reduces the complexity of the problem, because the geometric connection equations are obtained systematically. In addition, the artificial potential field simulates the attraction and repulsion forces between the goal and the obstacles, where the goal is identified as the global minimum and the obstacles as restricted points. Altogether the potential field and the genetic algorithm generate trajectories for the robot among the obstacles through the design of an appropriate fitness function that effectively drives the manipulator to the desired while avoiding collide with the obstacles.

Info:

Periodical:

Edited by:

G. Urriolagoitia-Calderón, L. H. Hernández-Gómez and M. Toledo-Velázquez

Pages:

73-78

DOI:

10.4028/www.scientific.net/AMM.15.73

Citation:

J. Ramírez-Gordillo et al., "Trajectory Generation of Robot Manipulators Using an Artificial Potential Function and Genetic Algorithms", Applied Mechanics and Materials, Vol. 15, pp. 73-78, 2009

Online since:

August 2009

Export:

Price:

$35.00

[1] S. A. Kumar and S. A. Morris: Dynamic Control of Multi-Arm Co-Operating Manipulator Systems, Journal of Robotics, vol. 22 (3), pp.271-283, ISSN: 0263-5747, (2004).

DOI: 10.1017/s0263574703005599

[2] E. A. Merchán-Cruz, G. Urriolagoitia-Calderón, L. H. Hernández Gómez, G. Villa y Rabasa, L. A. Flores-Herrera, and J. Flores-Campos, A.: Soft-Computing Techniques in the Trajectory Planning of Multi-Robot Manipulators Systems (Part I), Científica, Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, vol. 5 (4), pp.197-208, ISSN: 1665-0654, (2005).

[3] L. Tian and C. Collins: Motion Planning for Redundant Manipulators Using a Floating Point Genetic Algorithm, Journal of Intelligent and Robotic Systems, vol. 38 (4-3), pp.297-312, ISSN: 0921-0296, (2003).

DOI: 10.1023/b:jint.0000004973.29102.33

[4] L. Tian and C. Collins: An Effective Robot Trajectory Planning Method Using a Genetic Algorithm, Journal of Mechatronics, Elsevier Science, Oxford, vol. 14 (5), pp.455-470, ISSN: 0957-4158 (2004).

DOI: 10.1016/j.mechatronics.2003.10.001

[5] A. A. Ata and T. R. Myo: Collision-Free Trajectory Planning for Manipulators Using Generalized Pattern Search, International Journal of Simulation Modelling, vol. 5 (4), pp.145-154, SSN: 1726-4529, (2004).

DOI: 10.2507/ijsimm05(4)2.074

[6] O. Khatib: Real-Time Obstacle Avoidance for Manipulators and Mobile Robots, International Journal of Robotic Research, vol. 5 (1), pp.90-98, ISSN: 0278-3649 (1986).

DOI: 10.1177/027836498600500106

[7] K. A. De Jong: Learning With Genetic Algorithms: An Overview , Journal of Machine Learning, vol. 3 (2-3), pp.121-138, ISSN: 0885-6125, ISSN: 1573-0565, (1988).

DOI: 10.1007/bf00113894

[8] D. E. Goldberg and J. H. Holland: Genetic Algorithms and Machine Learning, Journal of Machine Learning, vol. 3 (2-3), pp.95-99, ISSN: 0885-6125, ISSN: 1573-0565, (1989).

DOI: 10.1007/bf00113892

[9] J. Denavit and R. Hartenberg: A Kinematic Notation for Lower-Pair Mechanisms on Matrices, Journal of Applied Mechanics, Transaction ASME, vol. 22, pp.215-221, (1955).

[10] E. A. Merchán-Cruz and A. S. Morris: Fuzzy-GA-Based Trajectory Planner for Robot Manipulators Sharing a Common Workspace, International Journal IEEE Transactions on Robotics, vol. 22 (4), pp.613-624, ISSN: 1552-3098, (2006).

DOI: 10.1109/tro.2006.878789

In order to see related information, you need to Login.