Study of Flow over a Step Cylinder


Article Preview

Flow over a step cylinder at ReD = 2000 and D/d = 2 was investigated using a URANS-based numerical approach. The results illustrate the downstream development and interaction of wake vortices and identify streamwise vortical structures originating at the step. The observed flow development is shown to be in agreement with experimental results. Also, a comparison of the computational results and previous experimental findings is carried out for the drag coefficient and the pressure coefficient.



Edited by:

G. Urriolagoitia-Calderón, L. H. Hernández-Gómez and M. Toledo-Velázquez




C. Morton et al., "Study of Flow over a Step Cylinder", Applied Mechanics and Materials, Vol. 15, pp. 9-14, 2009

Online since:

August 2009




[1] J.H. Gerrard, The wakes of cylindrical bluff bodies at low Reynolds number, Philosophical Transactions of The Royal Society of London, Series A 288, pp.351-382, (1978).

DOI: 10.1098/rsta.1978.0020

[2] C. H. K. Williamson, Vortex dynamics in the cylinder wake, Annual Review of Fluid Mechanics, vol. 28, pp.477-539, (1996).

DOI: 10.1146/annurev.fluid.28.1.477

[3] S.P. Singh and S. Mittal, Flow past a cylinder: Shear layer instability and drag crisis, Int. J. Numer. Meth. Fluids 47, pp.75-98, (2005).

DOI: 10.1002/fld.807

[4] M.E. Young and A. Ooi, Comparative Assessment of LES and URANS for Flow Over a Cylinder at a Reynolds Number of 3900, 16th Australasian Fluid Mechanics Conference, (2007).

[5] C. Wieselberger, Neuere Feststellungen Über die Gesetze des Flüssigkeits Luftwiderstands, Phys. Z. 22, pp.321-328, (1921).

[6] W. Dunn and S. Tavoularis, Experimental studies of vortices shed from cylinders with a step-change in diameter, Journal of Fluid Mechanics, vol. 555, pp.409-437, (2006).

DOI: 10.1017/s002211200600927x

[7] N.W.M. Ko and A.S.K. Chan, Pressure distributions on circular cylinders with stepwise change of the diameter, ASME Paper 84-WA/FE-13.

[8] C.G. Lewis and M. Gharib, An exploration of the wake three dimensionalities caused by a local discontinuity in cylinder diameter, Physics of Fluids, A 4, pp.104-117, (1992).

DOI: 10.1063/1.858489

[9] L.P. Chua, C.Y. Liu, and W.K. Chan, Measurements of a step cylinder, Intl. Commun. Heat Mass Transfer 25, pp.205-215, (1998).

[10] B. E. Launder and D.B. Spalding, The Numerical Computation of Turbulent Flows, Comput. Methods Appl. Mech. Eng. 3, pp.269-289, (1974).

[11] D.C. Wilcox, Reassessment of the Scale-determining Equation for Advanced Turbulence Models, AIAA Journal 26, pp.1299-1310, (1988).

DOI: 10.2514/3.10041

[12] F.R. Menter, Performance of Popular Turbulence Models for Attached and Separated Adverse Pressure Gradient Flow, AIAA Journal 30, pp.2066-2072, (1992).

DOI: 10.2514/3.11180

[13] F.R. Menter, Two-equation Eddy-viscosity Turbulence Model for Engineering Applications, AIAA Journal 32, pp.1598-1605, (1994).

DOI: 10.2514/3.12149

Fetching data from Crossref.
This may take some time to load.