Modeling of Dimensional Errors in Slender Bar Turning Process Using Artificial Neural Networks

Abstract:

Article Preview

Accurate predictive modeling is an essential prerequisite for optimization and control of production in modern manufacturing environments. For slender bar turning operations, dimensional deviation is one of the most important product quality characteristics due to the low stiffness of part. In this study, radial basis function neural network is employed to investigate dimensional errors in slender bar turning. The relationship between cutting parameters and dimensional errors is firstly described by the proposed model. Simulation is provided to investigate the effects of cutting parameters on dimensional errors. Further, real-time predictive model based on radial basis function neural network is developed to perform the dimensional error monitoring during slender bar turning process. Experiments verify that the proposed in-process predictive system has the ability to monitor efficiently dimensional errors within the range that they have been trained.

Info:

Periodical:

Edited by:

Kai Cheng, Yongxian Liu, Xipeng Xu and Hualong Xie

Pages:

549-553

DOI:

10.4028/www.scientific.net/AMM.16-19.549

Citation:

B. D. Cui and J. L. Guo, "Modeling of Dimensional Errors in Slender Bar Turning Process Using Artificial Neural Networks", Applied Mechanics and Materials, Vols. 16-19, pp. 549-553, 2009

Online since:

October 2009

Export:

Price:

$35.00

[1] S.Y. Liang, R.L. Hecher and R.G. Landers: Journal of Manufacturing Science and Engineering, Vol. 126 (2004), pp.297-310.

[2] H.C. Zhang and S.H. Huang: International Journal of Production Research, Vol. 33 (1995), pp.705-728.

[3] Monostori and László: Engineering Application of Artificial Intelligence, Vol. 16 (2003), pp.277-291.

[4] R. Azouzi and M. Guillot: International Journal of Machine Tools and Manufacture, Vol. 37 (1997), pp.1201-1217.

[5] T.S. Suneel and S.S. Pande: International Journal of Production Research, Vol. 38 (2000), pp.3181-3202.

[6] X. Li: International Journal of Advanced Manufacturing Technology, Vol. 17 (2001), pp.665-669.

[7] K.A. Risbood, U.S. Dixit and A.D. Sahasrabudhe: Journal of Materials Processing Technology, Vol. 132 (2003), pp.203-214.

In order to see related information, you need to Login.