Effect of MnCO3 on ZnO-Pr6O11-Co2O3-Cr2O3 Varistor Ceramics

Abstract:

Article Preview

0~1.5mol% MnCO3 doped ZnO-Pr6O11-Co2O3-Cr2O3 varistor ceramics were synthesized by conventional oxides mixing procedure. The effect of MnCO3 variations on the microstructure, phase constituents and electric field–current density (E-J) characteristics of the ceramics were studied by SEM, XRD examinations and standard E-J test. The result showed the electrical nonlinearity exponents and breakdown voltage of the ceramics increased from 38 and 1296V/mm of the un-doped one to 52 and 1420V/mm respectively with the addition of 0.5mol% MnCO3; meanwhile, the leak current density was reduced from 4.35μA/cm2 to 2.05 μA/cm2. Further doping MnCO3 deteriorated the overall varistor properties of the ceramics by remarkably decreasing the density of the ceramic, and the main reason causing the density drop was ascribed to the hindering effect of the well dispersed perovskite-like Pr0.95Mn0.9393O3 particles formed mainly within the ZnO grain boundary areas.

Info:

Periodical:

Edited by:

Xianghua Liu, Zhenhua Bai, Yuanhua Shuang, Cunlong Zhou and Jian Shao

Pages:

1135-1140

DOI:

10.4028/www.scientific.net/AMM.217-219.1135

Citation:

M. Zhao et al., "Effect of MnCO3 on ZnO-Pr6O11-Co2O3-Cr2O3 Varistor Ceramics", Applied Mechanics and Materials, Vols. 217-219, pp. 1135-1140, 2012

Online since:

November 2012

Export:

Price:

$35.00

[1] D. R. Clarke: J. Am. Ceram. Soc. Vol. 82 (1999), p.485.

[2] K. Mukae, K. Tsuda, I. Nagasawa: J. Appl. Phys. Vol. 16 (1977), p.1361.

[3] L. K. J. Vanadamme, J. C. Brugman: J. Appl. Phys. Vol. 51 (1980), p.4240.

[4] A. B. Alles, V. L. Burdick : J. Appl. Phys. Vol. 70 (1991), p.6883.

[5] S. Chun, N. Wakiya, H. Funakubo, et al. : J. Am. Ceram. Soc. Vol. 80 (1997), p.995.

[6] C. Nahm, C. Park, H. Yoon: J. Mater. Sci. Lett. Vol. 19 (20004), p.271.

[7] C. Nahm, B. Shin, B. Min: Mater. Chem. Phys. Vol. 82 (2003), p.157.

[8] C. Nahm, J. Park, M. Kim, et al.: J. Mate. Sci. Vol. 39 (2004), p.307.

[9] C. Nahm: Mater. Lett. Vol. 59 (2005), p. (2097).

[10] C. Nahm: J. Mater. Sci. Vol. 43 (2008): p.2857.

[11] C. Nahm, B. Shin, J. Park, et al.: Mater. Lett. Vol. 60 (2006), p.164.

[12] J. Park: Phys. B: Conden. Mat. Vol. 403 (2008), p.639.

[13] H. H. Hng, K. M. Knowles: J. Mater. Sci. Vol. 37 (2002), p.1143.

[14] M. Wang, G. Li, C. Yao, et al. : Vol. 37 (2011), p.2897.

[15] S. K. Dutta, R. M. Spriggs: J. Am. Ceram. Soc. Vol. 53 (1970), p.61.

[16] E. Pollert, Z. Jiraká: J. Solid State Chem. Vol. 35 (1980), p.262.

[17] T. Arakawa, A. Yoshida, J. Shiokawa: Mater. Res. Bull. Vol. 15 (1980), p.269.

In order to see related information, you need to Login.