Effects of Y2O3 and In2O3 on the Electrical Properties of SnO2-Based Varistors


Article Preview

The effects of Y2O3 and In2O3 on the microstructure and electrical properties of SnO2-based varistors were investigated. It was observed that the grain size of the samples decreased with doping Y2O3 and In2O3 and accordingly, the breakdown electrical field EB increased greatly. The measurements of barrier height and grain size reveal that the variation of grain size was not the only reason for the change of electrical properties of the sample doped with In2O3 and, the improvement of nonlinear coefficient α may mainly attribute to the increase of barrier height. Some energy levels of different state defects on the grain boundary were obtained and the energy about 0.15 eV detected here of all the samples may be attributed to the activation of . The different effects of doping Y2O3 and In2O3 indicate that In2O3 is more effective to improve nonlinear electrical behavior and breakdown electrical field of SnO2-based varistors.



Edited by:

Xianghua Liu, Zhenhua Bai, Yuanhua Shuang, Cunlong Zhou and Jian Shao




G. Z. Zang et al., "Effects of Y2O3 and In2O3 on the Electrical Properties of SnO2-Based Varistors", Applied Mechanics and Materials, Vols. 217-219, pp. 741-745, 2012

Online since:

November 2012




[1] M. Matsuoka, T. Masuyama and Y. Iida: Jpn. J. Appl. Phys. Vol. 8 (1969), p.1275.

[2] P. R. Emtage: J. Appl. Phys. Vol. 48 (1977), p.4372.

[3] T. K. Gupta: J. Am. Ceram. Soc. Vol. 73 (1990), 1817.

[4] M. H. Wang, G. Li, C. Yao: Ceram. Inter. Vol. 37 (2011), 2901.

[5] S. A. Pianaro, P. R. Bueno, E. Longo, J. A. Varela: J. Mater. Sci. Lett. Vol. 14 (1995), 692.

[6] P. R. Bueno, S. A. Pianaro, E. C. Pereira, L. O. S. Bulhoes, E. Longo: J. Appl. Phys. Vol. 84 (1998), 3700.

[7] Chunming Wang, Jingfeng Wang, Hongcun Chen, Wenxin Wang, Wenbin Su, Guozhong Zang, Peng Qi: J. Phys. D: Appl. Phys. Vol. 36 (2003), 3069.

DOI: https://doi.org/10.1088/0022-3727/36/23/031

[8] Wen-Xin Wang, Jing-Feng Wang, Hong-Cun Chen, Wen-Bin Su, Bing Jiang, Guo-Zhong Zang, Chun-Ming Wang, Peng Qi: J. Phys. D: Appl. Phys. Vol. 36 (2003), 1040.

DOI: https://doi.org/10.1088/0022-3727/36/8/316

[9] Guozhong Zang, Jingfeng Wang, Hongcun Chen, Wenbin Su, Wenxin Wang, Chunming Wang, Peng Qi: J. Alloy. Compd. Vol. 377 (2004), 72.

DOI: https://doi.org/10.1016/j.jallcom.2003.12.055

[10] G. Z. Zang, J. F. Wang, H. C. Chen, W. X. Wang, W. B. Su, C. M. Wang, P. Qi: Appl. Phys. A: Mater. Vol. 80 (2005), 1093.

[11] R. Metz, D. Koumeir, J. Morel, J. Pansiot, M. Houabes, M. Hassanzadeh: J. Europ. Ceram. Soc. Vol. 28 (2008), 829.

[12] H. Bastami, E. Taheri-Nassaj: Ceram. Inter. Vol. 38 (2012), 265.

[13] K. Uematsu, A. Terada, T. Morimoto: J. Am. Ceram. Soc. Vol. 72 (1989), 1070.

[14] S. L. Yang, J. M. Wu: J. Am. Ceram. Soc. Vol. 76 (1993), 145.

[15] S. H. Kim, H. W. Seon, H.T. Kim: Mater. Sci. Eng. B Vol. 60 (1999), 12.

[16] S. N. Bai, T. Y. Tseng: J. Appl. Phys. Vol. 74 (1993), 695.

[17] M. C. Kim, K. H. Song, J. Park: J. Mater. Res. Vol. 8 (1993), 1368.